導航:首頁 > 凈水問答 > 如何對數據進行清洗過濾的

如何對數據進行清洗過濾的

發布時間:2022-08-22 19:40:48

Ⅰ 大數據預處理的方法有哪些

1、數據清理


數據清理常式就是通過填寫缺失值、光滑雜訊數據、識別或者刪除離群點,並且解決不一致性來進行“清理數據”。


2、數據集成


數據集成過程將來自多個數據源的數據集成到一起。


3、數據規約


數據規約是為了得到數據集的簡化表示。數據規約包括維規約和數值規約。


4、數據變換


通過變換使用規范化、數據離散化和概念分層等方法,使得數據的挖掘可以在多個抽象層面上進行。數據變換操作是提升數據挖掘效果的附加預處理過程。

Ⅱ 數據清洗的主要類型

對於這一類數據——特別是維表中會出現這種情況——將重復數據記錄的所有欄位導出來,讓客戶確認並整理。
數據清洗是一個反復的過程,不可能在幾天內完成,只有不斷的發現問題,解決問題。對於是否過濾,是否修正一般要求客戶確認,對於過濾掉的數據,寫入Excel文件或者將過濾數據寫入數據表,在ETL開發的初期可以每天向業務單位發送過濾數據的郵件,促使他們盡快地修正錯誤,同時也可以做為將來驗證數據的依據。數據清洗需要注意的是不要將有用的數據過濾掉,對於每個過濾規則認真進行驗證,並要用戶確認。

Ⅲ 大數據工程師如何進行數據處理 具體步驟是什麼

【導讀】大數據工程師在進行數據處理的時候,針對不同來源、不同種類的數據,會採取不同的數據模型,會根據具體需求進行具體的分析,但是無論是何種數據,數據處理具體步驟都是大同小異的,因為底層的數據流基礎處理基準差異不大,那麼具體的數據處理步驟是什麼呢?下面我們就來具體了解一下。

1、拿

專業術語稱為「爬行」。例如,查找引擎能夠這樣做:它將Internet上的一切信息下載到其數據中心,然後您就能夠查找出來。例如,當您查找時,結果將是一個列表。為什麼此列表出現在查找引擎公司中?
這是由於他獲取了一切數據,可是假如您單擊鏈接,則該網站將不在查找引擎公司中。例如,假如您有來自新浪的新聞,則能夠使用網路進行查找。假如不單擊,則該頁面坐落網路數據中心中,而且該頁面坐落
出來的是在新浪的數據中心。

2、推送

有許多終端能夠幫助我搜集數據。例如,小米手環能夠將您的日常跑步數據,心跳數據和睡眠數據上傳到數據中心這兩個步驟是數據傳輸。通常,它將在行列中完成,由於數據量太大,而且必須對數據進行處理才能有用。可是系統無法處理它,所以我不得不排隊並慢慢地處理它。

3、存儲

現在,數據就是金錢,掌握數據就等於掌握金錢。否則,網站如何知道您要購買什麼?
這是由於它具有您的歷史交易數據。此信息無法提供給其他人,它十分寶貴,因此需要存儲。

4、數據處理和剖析

上面存儲的數據是原始數據,大多數原始數據比較凌亂,而且其中包含很多垃圾數據,因此需要對其進行清理和過濾以獲取一些高質量的數據。對於高質量數據,您能夠對其進行剖析以對數據進行分類,或者發現數據之間的關系並獲取知識。

5、用於數據檢索和發掘

檢索是查找,所謂交際不決議要問谷歌,內政不決議要問網路。內部和外部查找引擎都將經過剖析的數據放入查找引擎中,因此當人們想要查找信息時,他們能夠對其進行查找。

關於大數據工程師數據處理的詳細步驟,就給大家介紹到這里了,希望能夠滿足那些想要了解大數據處理人士的好奇心,更多大數據方面的相關資訊,歡迎大家繼續關注,加油!

Ⅳ 數據分析中如何清洗數據

在數據分析中我們重點研究的是數據,但是不是每個數據都是我們需要分析的,這就需要我們去清洗數據,通過清洗數據,這樣我們就能夠保證數據分析出一個很好的結果,所以說一個干凈的數據能夠提高數據分析的效率,因此,數據清洗是一個很重要的工作,通過數據的清洗,就能夠統一數據的格式,這樣才能夠減少數據分析中存在的眾多問題,從而提高數據的分析的效率。但是清洗數據需要清洗什麼數據呢?一般來說,清洗數據的對象就是缺失值、重復值、異常值等。
首先給大家說明一下什麼是重復值,所謂重復值,顧名思義,就是重復的數據,數據中存在相同的數據就是重復數據,重復數據一般有兩種情況,第一種就是數據值完全相同的多條數據記錄。另一種就是數據主體相同但匹配到的唯一屬性值不同。這兩種情況復合其中的一種就是重復數據。那麼怎麼去除重復數據呢?一般來說,重復數據的處理方式只有去重和去除兩種方式,去重就是第一種情況的解決方法,去除就是第二種情況的解決方法。
其次給大家說一下什麼是異常值,這里說的異常值就是指一組測試值中宇平均數的偏差超過了兩倍標准差的測定值。而與平均值的偏差超過三倍標准差的測定值則被稱為高度異常值。對於異常值來說,我們一般不作處理,當然,這前提條件就是演算法對異常值不夠敏感。如果演算法對異常值敏感了怎麼處理異常值呢?那麼我們就需要用平均值進行替代,或者視為異常值去處理,這樣可以降低數據異常值的出現。
而缺失值也是數據分析需要清理的對象,所謂缺失值就是數據中由於缺少信息導致數據的分組、缺失被稱為缺失值,存在缺失值的數據中由於某個或者某些數據不是完整的,對數據分析有一定的影響。所以,我們需要對缺失值進行清理,那麼缺失值怎麼清理呢?對於樣本較大的缺失值,我們可以直接刪除,如果樣本較小,我們不能夠直接刪除,因為小的樣本可能會影響到最終的分析結果。對於小的樣本,我們只能通過估算進行清理。
關於數據分析需要清楚的數據就是這篇文章中介紹的重復值、異常值以及缺失值,這些無用的數據大家在清理數據的時候一定要注意,只有這樣才能夠做好數據分析。最後提醒大家的是,大家在清理數據之前一定要保存好自己的原始數據,這樣我們才能夠做好數據的備份。切記切記。

Ⅳ 數據清洗什麼

數據清洗是指發現並糾正數據文件中可識別的錯誤的最後一道程序,包括檢查數據一致性,處理無效值和缺失值等。與問卷審核不同,錄入後的數據清理一般是由計算機而不是人工完成。

數據清洗是對數據進行重新審查和校驗的過程,目的在於刪除重復信息、糾正存在的錯誤,並提供數據一致性。

而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之後再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。

數據清洗從名字上也看的出就是把「臟」的「洗掉」,指發現並糾正數據文件中可識別的錯誤的最後一道程序,包括檢查數據一致性,處理無效值和缺失值等。因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為「臟數據」。我們要按照一定的規則把「臟數據」「洗掉」,這就是數據清洗。

Ⅵ 數據清洗的主要任務有哪些

數據清洗是指發現並糾正數據文件中可識別的錯誤的最後一道程序,包括檢查數據一致性,處理無效值和缺失值等。與問卷審核不同,錄入後的數據清理一般是由計算機而不是人工完成。

數據清洗的主要任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之後再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。數據清洗是與問卷審核不同,錄入後的數據清理一般是由計算機而不是人工完成。

數據清洗從名字上也看的出就是把「臟」的「洗掉」,指發現並糾正數據文件中可識別的錯誤的最後一道程序,包括檢查數據一致性,處理無效值和缺失值等。因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為「臟數據」。我們要按照一定的規則把「臟數據」「洗掉」,這就是數據清洗。

數據清洗原理:利用有關技術如數理統計、數據挖掘或預定義的清理規則將臟數據轉化為滿足數據質量要求的數據。

閱讀全文

與如何對數據進行清洗過濾的相關的資料

熱點內容
檔案室凈化器怎麼使用 瀏覽:212
污水處理排污許可 瀏覽:6
蒸汽熨斗自動除垢有用嗎 瀏覽:962
如何處理含硫酸根的廢水 瀏覽:1
污水在線PH監測儀 瀏覽:379
自來水廠反滲透膜中標 瀏覽:312
生活污水排放試驗壓力是多少 瀏覽:713
凝膠過濾NaCl 瀏覽:304
醫療廢棄物無污水處理的情況說明 瀏覽:408
05老寶來汽油濾芯在哪裡 瀏覽:213
水垢是晶體 瀏覽:917
遼陽自來水廠生產廢水如何處理 瀏覽:963
洗碗廠污水設備多少錢 瀏覽:832
濾芯器什麼牌子好 瀏覽:392
電流互感器如何提升精度 瀏覽:701
自己清洗ro膜 瀏覽:565
一體式凈水器濾芯有什麼區別 瀏覽:3
大話西遊2男鬼用什麼武器回血最好 瀏覽:312
如何選擇飲水器濾芯的規格 瀏覽:875
水龍頭凈水器出水少怎麼辦 瀏覽:965