⑴ 自适应过滤法完整正确c++程序
自适应过滤法???抱歉我还没学过!一、自适应过滤法就是从自回归系数的一组初始估计值开始利用公式
逐次迭代,不断调整,以实现自回归系数的最优化。
自适应过滤法的基本步骤有:
(1)首先确定模型阶数P
(2)选择合适的滤波参数k
(3)计算每一次残差e
(4)根据残差e以及调整公式计算下一轮的系数
(5)迭代直到取得合适的系数
二、自适应过滤法的一个很重要的特点是经过逐次迭代,自回归系数可以不断调整,以使自回归系数达到最优化。
自适应过滤法优点是:
(1)简单易行,可采用标准程序上机运算。
(2)适用于数据点较少的情况。
(3)约束条件较少
(4)具有自适应性,他能自动调整回归系数,是一个可变系数的数据模型。
三、使用自适应过滤法应选择好滤波常数k,这样不仅可使迭代次数不太多,而且可以确保MSE取值最小。
滤波常数k的选择原则有:
(1)k越接近于1可以减少迭代次数
(2)为了避免太大的k而导致的误差序列的发散性,k应小于或等于1/P
(3)根据Box-Jenkins方法的基本知识,
,
而Windrow将其表述为:
四、对原始数列做标准化处理很重要,这样可加快迭代的收敛速度,并使取得的误差从平均意义上逐渐减小。
五、学会使用计算机来进行自适应过滤法的计算,这样可使自适应过滤法的应用变得简单易行。
⑵ 自适应过滤法只能预测一期的数据吗
自适应量化是使量化级差跟随输入信号变化,使不同大小的信号平均量化误差最小,从而提高信噪比;自适应预测的基本思想是使预测系数跟随输入信号而变化,从而保证预测值与样值最接近,即预测误差最小。
⑶ 预测方法中自适应过滤法的一段C++程序,哪位大虾帮我看看,我这个程序没有错误,但是不能输入数据
gezhongshuju
⑷ 要求进行自适应过滤法分析
你好:
这可以用SPSS软件进行分析的!
⑸ 自适应过滤法的应用
用自适应过滤法调整权数的方法如下:基于不断发现预测值与观测值之间的误差,然后对预测模型的权数加以调整,以缩小误差,并反复循环,最终使误差为零。调整权数的公式是按数学中最优化原理的最速下降法给出的。
一、自适应过滤法就是从自回归系数的一组初始估计值开始利用公式
逐次迭代,不断调整,以实现自回归系数的最优化。
自适应过滤法的基本步骤有:
(1)首先确定模型阶数P
(2)选择合适的滤波参数k
(3)计算每一次残差e
(4)根据残差e以及调整公式计算下一轮的系数
(5)迭代直到取得合适的系数
二、自适应过滤法的一个很重要的特点是经过逐次迭代,自回归系数可以不断调整,以使自回归系数达到最优化。
自适应过滤法优点是:
(1)简单易行,可采用标准程序上机运算。
(2)适用于数据点较少的情况。
(3)约束条件较少
(4)具有自适应性,他能自动调整回归系数,是一个可变系数的数据模型。
三、使用自适应过滤法应选择好滤波常数k,这样不仅可使迭代次数不太多,而且可以确保MSE取值最小。
滤波常数k的选择原则有:
(1)k越接近于1可以减少迭代次数
(2)为了避免太大的k而导致的误差序列的发散性,k应小于或等于1/P
(3)根据Box-Jenkins方法的基本知识,
,
而Windrow将其表述为:
四、对原始数列做标准化处理很重要,这样可加快迭代的收敛速度,并使取得的误差从平均意义上逐渐减小。
五、学会使用计算机来进行自适应过滤法的计算,这样可使自适应过滤法的应用变得简单易行。
⑹ 自适应过滤法的缺点是什么呀,急!!!
自适应过滤法对处理具有长期趋势性变动或季节性变动的确定型时间序列比较有优势。对于有线性趋势的数据,可以应用差分方法消除数据的趋势。
⑺ 自适应滤波方法涉及的理论基础有哪些
自适应滤波方法对某一点的滤波平滑,依赖于该点邻域的信息统计,而该邻域的尺寸范围也由该邻域的信息统计决定.自适应滤波方法常用于条纹密度变化较大的条纹图像的预处理。
原理:利用前一时刻获得的滤波结果,自动调节现时刻的滤波器参数,以适应信号和噪声的未知特性,从而实现最优滤波。
最优的准则:
1、最小均方误差准则(minimum mean square error, MMSE)
使误差的均方值最小
2、最小二乘准则(least square error, LSE)
使误差的平方和最小
(7)自适应过滤法宏扩展阅读
自适应滤波的研究对象是具有不确定的系统或信息过程。这里的“不确定性”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因素和随机因素。
任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是设计者事先并不一定能确切知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示。
这些扰动通常是不可测的,它们可能是确定性的,也可能是随机的。此外,还有一些测量噪音 也以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。
面对这些客观存在的各式各样的不确定性,如何综合处理该信息过程,并使得某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。
⑻ 各位 有谁知道自适应过滤法的MATLAB的程序
(1)首先确定模型阶数P
(2)选择合适滤波参数k
(3)计算每残差e
(4)根据残差e及调整公式计算轮系数
(5)迭代直取合适系数!
⑼ 自适应过滤法的介绍
自适应过滤法是根据一组给定的权数对时间数列的历史观察值进行加权平均计算一个预测值,然后根据预测误差调整权数以减少误差,这样反复进行直至找出一组“最佳”权数,使误差减少到最低限度,再利用最佳权数进行加权平均预测。