㈠ 用 Python 做策略回测,耗时很长,有什么加速办法
一个好的计算逻辑是很重要的啊,比如你去计算一个式子的时候,你去分析千百遍也不如你有一个好的运算方法。计算的时候一定要准备好计算方法,别的计算方法一定要统一规划。
使用计算机的时候能用计算机交易,这样能够克服你的暴躁的情绪。构建属于自己交易的水准,还有一些措施就是你要去看那些引导文档,不要自己去摸索。要有自己的专业的知识。
㈡ 选股策略回测用 Matlab 好还是用 Python 好
语言就是用来干活的,中间文件用HDF5或者csv转存,需要时间序列分析的时候上内R.毕竟Python的sm库还是很烂的容,但是PCA和大量的多因子计算,Python R MATLAB都差不多。
回测讲究并发效率和一些多参数回测的参数调优以及一些MC方法的估计时,py运行效率(相对于MATLAB)会高一些
总体来说,别太把语言当回事,就跟吃饭用筷子还是勺子还是叉子,要根据食材来
㈢ python量化哪个平台可以回测模拟实盘还不要钱
Python量化投资框架:回测+模拟+实盘
Python量化投资 模拟交易 平台 1. 股票量化投资框架体系 1.1 回测 实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline :事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade : 事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest :以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2 模拟 模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。 当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。 雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3 实盘 实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation : 实时获取新浪 / Leverfun 的免费股票以及 level2 十档行情 / 集思路的分级基金行情 easyhistory : 用于获取维护股票的历史数据 easyquant : 股票量化框架,支持行情获取以及交易 2. 期货量化投资框架体系 一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1 回测 回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少; 去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。 就个人理解而言,可能wind的是一个相对合适的选择。 2.2 模拟 + 实盘 vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。 能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。
㈣ python 回测用什么包
比较成熟的库可以参考如下几个: pybacktest pyalgotrader zipline bt backtrader pybacktest基于vector,不是event based,快得多回得多,缺点也明显答。
㈤ 用Python 做策略回测,耗时很长,有什么加速办法
不是,这里测不出真的网速,应该用电脑管家测。不过我觉得是系统问题。在给你推荐一种方法,可以提高20的宽带。一、每天关机前清洗 1、双击“我的电脑” 2、右键点C盘 3、点“属性” 4、点“磁盘清理” 5、点“确定” 6、再点“是” 7、再点“确定”。 8、清理过程中,您可看得到未经您许可(您可点“查看文件”看,就知道了)进来的“临时文件”被清除了,盘的空间多了。对D,E,F盘也用此法进行。 二、随时进行清理 1、打开网页 2、点最上面一排里的“工具” 3、点“Internet选项” 4、再点中间的“Internet临时文件”中的“删除文件” 5、再在“删除所有脱机内容”前的方框里打上勾 6、再点“确定” 7、清完后又点“确定”。 8、这样,可为打开网页和空间提速 三、一星期进行所有盘的垃圾清理 1、点“开始” 2、用鼠标指着“所有程序” 3、再指着“附件”, 4、再指着“系统工具” 5、点“磁盘粹片整理程序” 6、点C盘,再点“碎片整理”(这需要很长时间,最好在您去吃饭和没用电脑时进行。清理中您可看到您的盘里的状况,可将清理前后对比一下) 7、在跳出“清理完成”后点“关闭”。 8、按上述方法,对D,E,F盘分别进行清理。 四、给宽带加速,一分钟学会释放电脑保留的20%宽带资源。 1、单击“开始——运行”,输入gpedit.msc回车后即可打开“组策略对象编辑器”。 2、“计算机配置——管理模板——网络——QoS数据包计划程序”,双击右面设置栏中的“限制可保留带宽”,在打开的属性对话框中的“设置”选项卡中将“限制可保留带宽”设置为“已启用”,然后在下面的“带宽限制(%)”栏将带宽值“20”设置为“0”即可。 3、修改完之后,我们可重新打开IE浏览器或者用BT或迅雷下载文件,发现上网和下载的速度明显提升。此项修改对XP和VISTA均有效。
㈥ 有没有基于python pandas的回测框架
本地运行:
Quantopian开源的zipline可以,但是本地的回测程序,做美股研究可以,但是A股不适合。
线上运行:
想线上回测美股可以使用Quantopian,不过有时链接不是很稳定;
因为A股独特的交易机制,使得没有一款本地可以运行回测的python包。一、你可以到JoinQuant聚宽量化交易平台,他们自己写的A股回测框架,还提供处理好的数据,这一点非常好,省去了自己数据清洗的过程。除了A股还有基金期货的数据,可以做个轮动,对冲等等。二、就是自己写回测框架,优点是灵活,自己随意改,缺点就是需要一定的编程基础。
总结:
JoinQuant和Quantopian数据都可以取到DataFrame格式的,并且都提供notebook以及回测模式,回测研究都可以在线完成。
㈦ 选股策略回测用matlab好还是用python好
我没钱,支持免费开源
抛开版权不说,初期入手策略测试、数据分析用matlab非常方便
但是策略测试方法、框架弄清楚后,要做正规的回测,还是Python方便,这里的正规是指严格的事件流驱动,虽然速度慢,但是避免未来函数影响、接近实盘的逻辑。
Python在这方面已经有很多库了,quantopian的zipline应该算鼻祖了,国内的优矿网和ricequant都跟zipline很像,另外还有知乎大神的zn.py,PyAlgoTrade等
㈧ 使用python做量化交易策略测试和回验,有哪些比较成熟一些的库
可以尝试一下JoinQuant: 聚宽,人人皆为宽客
详细的API文档:API文档 - JoinQuant
免费提供IPython Notebook研究平台,提供分钟级数据,采用Docker技术隔离,资源独立、安全性更高、性能更好,同步支持Python2、Python3。
免费提供沪深A股、ETF的历史交易数据,支持基于日级、分钟级的精准回测。
免费提供最准确、实时的沪深A股、ETF模拟交易工具,支持基于tick级的模拟交易。
为量化爱好者提供线上交流社区,支持一键克隆策略,便于用户交流量化策略、学习量化知识,一起成长。
基于2005年至今完整的Level-2数据,上市公司财务数据,包含完整的停复牌、复权、退市等信息,盘后及时更新。
㈨ Python学习,量化交易的应该怎么学
链接:http://pan..com/s/1djPqbCXnQrRpW0dgi2MCJg
华尔街学堂 python金融实务从入门到精通。最近,越来越多的研究员、基金经理甚至财务会计领域的朋友,向小编咨询:金融人需要学Python么?事实上在现在,这已经不是一个问题了。Python已成为国内很多顶级投行、基金、咨询等泛金融、商科领域的必备技能。中金公司、银河证券、南方基金、银华基金在招聘分析师岗位时,纷纷要求熟练掌握Python数据分析技能。
课程目录:
Python在金融资管领域中的应用
安装anaconda步骤
Python基础知识
Python基础金融分析应用
成为编程能手:Python知识进阶
利用Python实现金融数据收集、分析与可视化
......
㈩ python回测系统 模拟回测 最简单量化回测系统有哪些支持期货和股票
github上有一个jdhc简单回测 是用python写的比较简单,需要设置些参数。