『壹』 为什么趣头条内容不能正常看了
可能是因为趣头条升级了,你没跟上步奏,重新下载按提示操作就可以了。
趣头条是一款上海基分文化传播有限公司开发的APP,于2016年6月正式上线。以娱乐,生活资讯为主体内容,依托于智能化数据分析系统,为新兴市场受众提供精准的内容分发服务。凭借出色的内容创新与阅读体验,成为移动内容聚合APP独角兽。
2018年8月18日,趣头条提交美国IPO(Initial public offerings)申请。2018年9月14日晚间,趣头条正式挂牌纳斯达克交易所,成为移动内容聚合第一股。
趣头条致力于打造一款新形式的资讯阅读软件,以平台,媒体和共赢的方式。以移动应用为载体进行内容创造,资讯阅读,提供更多有用,有趣,有益的内容给大家。原创内容,通过与媒体和PGC的合作,趣头条获得原创内容。个性化推荐,国内专家与硅谷科学家联手,以大数据为支撑,为用户推荐特色阅读内容。
趣头条推荐系统,依据用户属性进knn聚类,对用户兴趣深度挖掘,使用lda主题模型对文章进行分类,使用深度神经网络模型训练doc2vec。离线计算使用svd矩阵分解和item base协同过滤,生成个性化推荐文章集,线上实时使用LR预测模型,通过点击反馈对推荐结果进行重排序。将人群和文章进行分类,将用户喜欢的文章推荐给用户。
『贰』 基于用户、基于项目和SVD的协同过滤Python代码
目前主要有三种度量用户间相似性的方法,分别是:余弦相似性、相关相专似性以及修正的属余弦相似性。①余弦相似性(Cosine):用户一项目评分矩阵可以看作是n维空间上的向量,对于没有评分的项目将评分值设为0,余弦相似性度量方法是通过计算向量间的余弦夹角来度量用户间相似性的。设向量i和j分别表示用户i和用户j在n维空间上的评分,则用基于协同过滤的电子商务个性化推荐算法研究户i和用户j之间的相似性为:②修正的余弦相似性 (AdjustedCosine):余弦相似度未考虑到用户评分尺度问题,如在评分区间[1一5]的情况下,对用户甲来说评分3以上就是自己喜欢的,而对于用户乙,评分4以上才是自己喜欢的。通过减去用户对项的平均评分,修正的余弦相似性度量方法改善了以上问题。用几表示用户i和用户j共同评分过的项集合,Ii和寿分别表示用户i和用户j评分过的项集合,则用户i和用户j之间的相似性为:③相关相似性(Correlation)此方法是采用皮尔森(Pearson)相关系数来进行度量。设Iij表示用户i和用户j共同评分过的项目集合,则用户i和用户j之间相似性为:
『叁』 Amazon推荐系统是如何做到的
亚马逊使用了哪些信息进行推荐:
1)当前浏览品类
2)与当前商品经常一同购买的商品
3)用户最近浏览记录
4)用户浏览历史(长期)中的商品
5)用户浏览历史(长期)相关的商品
6)购买相同商品的其它用户购买的物品
7)已购商品的新版本
8)用户购买历史(如近期购买商品的互补品)
9)畅销商品
2、推荐系统模型:U x S → R
1)U是用户矩阵
2)S是物品矩阵
3)R是用户对物品的喜爱程度,推荐系统就是基于现有的信息填补R矩阵
3、常用推荐算法
1)基于内容:易实现,效果好,但是如何获得一个物品的内容、相似度如何定义等有些情况下会较难把握
2)协同过滤:基于物的协同过滤与基于人的协同过滤
3)矩阵分解(SVD):用户-物品评分矩阵A很大且稀疏,将A分解为用户矩阵(用户潜在因子)和物品矩阵(物品潜在因子),目标是这两个矩阵的乘积尽可能接近R。缺点是只利用了评分信息,忽略了用户属性和物品属性
4)因子分解机(FM):将SVD推广到多类潜因子的情况,如分解为 用户、物品、用户性别、用户年龄、物品价格 等多个因子,允许因子之间有相关关系(如下图,方程前半部分是线性回归,后半部分加入了两两因子间关系)
5)深度学习:训练深度神经网络,输入用户id,输出层做softmax,得到对每个物品id的权重
6)机器学习排序
7)探索与利用:先对用户聚类(如分为abcde五类),随机对a中的用户1和b中的用户2推荐电影,如果用户1没点击,2点击了,说明b类用户可能对该电影更感兴趣。
8)集成:对上述多种方法的ensemble
『肆』 文本主题模型之潜在语义索引(LSI)
文本主题模型之潜在语义索引(LSI)
在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。
1. 文本主题模型的问题特点
在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。
聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。
那么如何找到隐含的主题呢?这个一个大问题。常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。
当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。
2. 潜在语义索引(LSI)概述
潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用和矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。
这里我们简要回顾下SVD:对于一个m×n的矩阵A,可以分解为下面三个矩阵:
Am×n=Um×mΣm×nVn×nT
有时为了降低矩阵的维度到k,SVD的分解可以近似的写为:
Am×n≈Um×kΣk×kVk×nT
如果把上式用到我们的主题模型,则SVD可以这样解释:我们输入的有m个文本,每个文本有n个词。而Aij则对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个文本和第l个主题的相关度。Vjm对应第j个词和第m个词义的相关度。Σlm对应第l个主题和第m个词义的相关度。
也可以反过来解释:我们输入的有m个词,对应n个文本。而Aij则对应第i个词档的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个词和第l个词义的相关度。Vjm对应第j个文本和第m个主题的相关度。Σlm对应第l个词义和第m个主题的相关度。
这样我们通过一次SVD,就可以得到文档和主题的相关度,词和词义的相关度以及词义和主题的相关度。
3. LSI简单实例
这里举一个简单的LSI实例,假设我们有下面这个有10个词三个文本的词频TF对应矩阵如下:
这里我们没有使用预处理,也没有使用TF-IDF,在实际应用中最好使用预处理后的TF-IDF值矩阵作为输入。
我们假定对应的主题数为2,则通过SVD降维后得到的三矩阵为:
从矩阵Uk我们可以看到词和词义之间的相关性。而从Vk可以看到3个文本和两个主题的相关性。大家可以看到里面有负数,所以这样得到的相关度比较难解释。
4. LSI用于文本相似度计算
在上面我们通过LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。比如对于上面的三文档两主题的例子。我们可以计算第一个文本和第二个文本的余弦相似度如下 :
sim(d1,d2)=(?0.4945)?(?0.6458)+(0.6492)?(?0.7194)(?0.4945)2+0.64922(?0.6458)2+(?0.7194)2
5. LSI主题模型总结
LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在当前实际的主题模型中已基本不再使用。
主要的问题有:
1) SVD计算非常的耗时,尤其是我们的文本处理,词和文本数都是非常大的,对于这样的高维度矩阵做奇异值分解是非常难的。
2) 主题值的选取对结果的影响非常大,很难选择合适的k值。
3) LSI得到的不是一个概率模型,缺乏统计基础,结果难以直观的解释。
对于问题1),主题模型非负矩阵分解(NMF)可以解决矩阵分解的速度问题。对于问题2),这是老大难了,大部分主题模型的主题的个数选取一般都是凭经验的,较新的层次狄利克雷过程(HDP)可以自动选择主题个数。对于问题3),牛人们整出了pLSI(也叫pLSA)和隐含狄利克雷分布(LDA)这类基于概率分布的主题模型来替代基于矩阵分解的主题模型。
回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。
『伍』 mahout包括哪些算法
一、分类算法
(一)Logistic 回归(SGD)
(二)Bayesian
(三)SVM
(四)Perceptron 和Winnow
(五)神经网络
(六)随机森林
(七)受限玻尔兹曼机
(八)Boosting
(九)HMM
(十)Online Passive Aggressive
二、聚类算法
(一)Canopy
(二)K-Means
(三)Fuzzy K-means
(四)EM
(五)Mean shift
(六)层次聚类
(七)Dirichlet process
(八)LDA
(九)Spectral
(十)MinHash
(十一)Top Down
三、推荐算法
Mahout包括简单的非并行的推荐和基于Hadoop的并行推荐的实现。
(一)非并行推荐
(二)分布式的基于Item的协同过滤
(三)并行矩阵分解的协同过滤
四、关联规则挖掘算法
并行FP-Growth
五、回归
Locally Weighted Linear Regression
六、降维
(一)SVD
(二)SSVD
(三)PCA
(四)ICA
(五)GDA
七、进化算法
八、向量相似性计算
『陆』 趣头条里的金币有什么用可以兑换零钱吗
金币在趣头条中是该平台的虚拟货币单位,作用是当天所赚取的金币会在第二天自动转换成人民币存入你的零钱账户,然后零钱就可以进行兑换手机话费、流量或是直接提现!满20元可以兑换手机话费或是流量,满30元可以直接提现微信钱包!在“兑换&提现”操作即可。
“趣头条”作为一款新生代内容资讯APP,由上海基分文化传播有限公司开发。团队致力于让用户的阅读更有价值,通过大数据算法和云计算等技术,为用户提供感兴趣、有价值的个性化内容及服务。
【创始人介绍】:
谭思亮 趣头条创始人兼董事长
毕业于清华大学和中科院,曾任职雅虎、51.com、若邻网高管,后担任盛大广告业务负责人。作为连续创业者,他创立的第一家广告技术公司在不到两年的时间内估值增长到数亿美金并实现上市公司并购重组 。基于对互联网的理解和战略洞察,成功创立和孵化了包括趣头条在内一系列快速增长的互联网公司;此外作为一名投资人,一直聚焦互联网领域,已成功投资和并购了多家海内外互联网技术公司。
李磊 趣头条创始人兼首席执行官
进入互联网行业12年,职业生涯曾在51.com、盛大管理层任职。2016年,李磊抓住移动内容分发的风口带领团队成立趣头条项目,瞄准了移动资讯在用户和内容上的新蓝海 。2017年6月,趣头条在App Store资讯类排行榜迅速提升到第4位,目前已成为移动互联网新的流量入口和移动资讯平台级应用。
【赚取金币方法】
最有效的那就是邀请好友使用趣头条,金币奖励将会非常丰厚哦!邀请一个好友,系统奖励现金红包1.5元,分5次发放,好友再邀请他的好友奖励您0.2元;好友阅读文章每赚到10金币的同时您也将得到20金币,包括签到、评论等也会产生一定的金币进贡。
要知道一名徒弟的金币进贡是自已收益的2倍呦,如果您邀请了5名好友,则每日收益就会增加10倍之多,邀请好友越多您的收入就越高!经小编测试,如果你有10个活跃下线的话,那一个月能赚200-300元,所以下线越多,那收入也自然就越高了,10个下线对于每个人来说都是非常容易的事。
『柒』 微博最常访问算法
基础及关联算法
这一层算法的主要作用是为微博推荐挖掘必要的基础资源、解决推荐时的通用技术问题、完成必要的数据分析为推荐业务提供指导。
这一部分中常用的算法和技术如下:
分词技术与核心词提取
是微博内容推荐的基础,用于将微博内容转化为结构化向量,包括词语切分、词语信息标注、内容核心词/实体词提取、语义依存分析等。
分类与 anti-spam
用于微博内容推荐候选的分析,包含微博内容分类和营销广告/色情类微博识别;
内容分类采用决策树分类模型实现,共 3 级分类体系,148 个类别;营销广告/色情类微博的识别,采用贝叶斯与最大熵的混合模型。
聚类技术
主要用于热点话题挖掘,以及为内容相关推荐提供关联资源。属于微博自主研发的聚类技术 WVT 算法(word vector topic),依据微博内容特点和传播规律设计。
传播模型与用户影响力分析
开展微博传播模型研究和用户网络影响力分析(包含深度影响力、广度影响力和领域内影响力)。
主要推荐算法
1. Graph-based 推荐算法
微博具有这样的特点:用户贡献内容,社会化途径传播,带来信息的爆炸式传播。之所以称作 graph-based 推荐算法,而不是业界通用的 memory-based 算法,主要原因在于:
我们的推荐算法设计是建立在社交网络之上,核心点在于从社交网络出发,融入信息传播模型,综合利用各类数据,为用户提供最佳的推荐结果;比如很多时候,我们只是信息传播的关键环节,加入必要的推荐调控,改变信息传播通路,后续的传播沿着原来的网络自然的传播。
Feed 流推荐(我们称作趋势),是我们最重要的产品,而结果必须包含用户关系。
从 graph 的宏观角度看,我们的目标是建立一个具有更高价值的用户关系网络,促进优质信息的快速传播,提升 feed 流质量;其中的重要工作是关键节点挖掘、面向关键节点的内容推荐、用户推荐。
对这部分的算法做相应的梳理,如下面的表格:
这样利用 content-based 很好的解决了冷启动的问题,又充分发挥了 user-based CF 的作用,实现1+1>2 的效果。
分层模型混合:
很多情况下,一个模型无法很好的得到想要的效果,而分层组合往往会取得比较好的效果,分层模型混合即“将上一层模型的输出作为下层模型的特征值,来综合训练模型,完成推荐任务“。比如我们在做微博首页右侧的 ctr 预估排序时,采用分层逻辑回归模型,解决了不同产品间特征天然缺失与样本量差异、曝光位置带来的效果偏差等问题。
『捌』 趣头条一天能赚多少
趣头条光靠看新闻赚钱的话,一天大概一块钱左右,可以作为娱乐,真要当成主要收入来源还是不实际的。
2019年6月,上海市市场监管局约谈趣头条等曾宣称“看新闻能赚钱”的资讯类平台,要求相关企业加强广告发布前审查把关,杜绝发布虚假违法广告。
2019年11月,上海基分文化传播有限公司获国家互联网信息办公室颁发《互联网新闻信息服务许可证》。
(8)svd分解协同过滤扩展阅读:
趣头条的应用特色
1、独特算法
趣头条推荐系统,依据用户属性进knn聚类,对用户兴趣深度挖掘,使用lda主题模型对文章进行分类,使用深度神经网络模型训练doc2vec(文本分析下的情感分析,从文字中自动识别出人们对特定主题的主观看法、情绪以及态度等等)。
离线计算使用svd矩阵分解和item base协同过滤,生成个性化推荐文章集,线上实时使用LR预测模型,通过点击反馈对推荐结果进行重排序。将人群和文章进行分类,将用户喜欢的文章推荐给用户。
2、独特运营
把握聚合内容趋势的基础下,趣头条还满足用户获取资讯个性化、社交化、本地化的需求。通过PGC强力扶持计划,吸纳了一大批时尚类、生活类大V、权威媒体、企业组织等类型的自媒体、内容创作方入驻。
『玖』 推荐算法有哪些
推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。 基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。 协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。 最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。
『拾』 趣头条发视频要求竖屏怎么做
在电脑端打开爱剪辑,在弹出框的“新建”框中修改“视频大小”,如:1080*1920(1080P竖屏)。然后,在“视频”面板下点击左下角的“添加视频”,在弹出框中即可导入横屏视频。此时,由于分辨率不一致,视频上下会存在黑边。
趣头条推荐系统,依据用户属性进knn聚类,对用户兴趣深度挖掘,使用lda主题模型对文章进行分类,使用深度神经网络模型训练doc2vec(文本分析下的情感分析,从文字中自动识别出人们对特定主题的主观看法、情绪以及态度等等)。离线计算使用svd矩阵分解和itembase协同过滤,生成个性化推荐文章集,线上实时使用LR预测模型,通过点击反馈对推荐结果进行重排序。将人群和文章进行分类,将用户喜欢的文章推荐给用户。
握聚合内容趋势的基础下,趣头条还满足用户获取资讯个性化、社交化、本地化的需求。通过PGC强力扶持计划,吸纳了一大批时尚类、生活类大V、权威媒体、企业组织等类型的自媒体、内容创作方入驻。