导航:首页 > 净水问答 > hbase列簇过滤器

hbase列簇过滤器

发布时间:2022-07-18 04:41:58

⑴ HBase是什么呢,都有哪些特点呢

Hbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等待

那Hbase有什么特性呢?如下:

HFile

HFile是Hbase在HDFS中存储数据的格式,它包含多层的索引,这样在Hbase检索数据的时候就不用完全的加载整个文件。索引的大小(keys的大小,数据量的大小)影响block的大小,在大数据集的情况下,block的大小设置为每个RegionServer 1GB也是常见的。

探讨数据库的数据存储方式,其实就是探讨数据如何在磁盘上进行有效的组织。因为我们通常以如何高效读取和消费数据为目的,而不是数据存储本身。

Hfile生成方式

起初,HFile中并没有任何Block,数据还存在于MemStore中。

Flush发生时,创建HFile Writer,第一个空的Data Block出现,初始化后的Data Block中为Header部分预留了空间,Header部分用来存放一个Data Block的元数据信息。

而后,位于MemStore中的KeyValues被一个个append到位于内存中的第一个Data Block中:

注:如果配置了Data Block Encoding,则会在Append KeyValue的时候进行同步编码,编码后的数据不再是单纯的KeyValue模式。Data Block Encoding是HBase为了降低KeyValue结构性膨胀而提供的内部编码机制。

⑵ hbase和hive有什么区别

1:Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据。Hive本身不存储数据,它完全依赖HDFS和MapRece。这样就可以将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapRece任务进行运行。 而HBase表是物理表,适合存放非结构化的数据。
2:Hive是基于MapRece来处理数据,而MapRece处理数据是基于行的模式;HBase处理数据是基于列的而不是基于行的模式,适合海量数据的随机访问。
3:HBase的表是疏松的存储的,因此用户可以给行定义各种不同的列;而Hive表是稠密型,即定义多少列,每一行有存储固定列数的数据。
4:Hive使用Hadoop来分析处理数据,而Hadoop系统是批处理系统,因此不能保证处理的低迟延问题;而HBase是近实时系统,支持实时查询。
5:Hive不提供row-level的更新,它适用于大量append-only数据集(如日志)的批任务处理。而基于HBase的查询,支持和row-level的更新。
6:Hive提供完整的SQL实现,通常被用来做一些基于历史数据的挖掘、分析。而HBase不适用与有join,多级索引,表关系复杂的应用场景。

⑶ 简述通过Apache+HBase+API进行表过滤器应用的理解

摘要 过滤器是HBase为客户端提供的一种高级API,是HBase的一种高级特性,它提供了非常强大的功能帮助用户处理表中的数据。HBase中读取数据的API主要是get()和scan(),它们都支持直接读取数据和通过指定起始行健访问数据的功能,可以通过添加限定条件如列族、列、时间戳等来限制查询的数量,但是它们缺少一种细粒度的的筛选功能,比如基于正则表达式的筛选。由此诞生过滤器,Get类和Scan类都支持过滤器,通过方法setFilter(Filter filter)可以设置查询时的过滤器。

⑷ HBase列族是怎么定义的,一个表要定义几个列族较好求帮助,谢谢了

HBase表中的每个列都归属于某个列族,列族必须作为表模式(schema)定义的一部分预先给出;
列名以列族作为前缀,每个“列族”都可以有多个列成员(column);
HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。
目前
hbase
不能很好地处理
多个列族
建议
只用
1
~
2
个列族
最好只用一个

⑸ Hbase的特性有哪些

HBase不是一个关系型数据库,它需要不同的方法定义你的数据模型,HBase实际上定义了一个四维数据模型,下面就是每一维度的定义:

行键:每行都有唯一的行键,行键没有数据类型,它内部被认为是一个字节数组。
列簇:数据在行中被组织成列簇,每行有相同的列簇,但是在行之间,相同的列簇不需要有相同的列修饰符。在引擎中,HBase将列簇存储在它自己的数据文件中,所以,它们需要事先被定义,此外,改变列簇并不容易。
列修饰符:列簇定义真实的列,被称之为列修饰符,你可以认为列修饰符就是列本身。
版本:每列都可以有一个可配置的版本数量,你可以通过列修饰符的制定版本获取数据。

⑹ hbase的过滤器有哪些

HBase为筛选数据提供了一组过滤器,通过这个过滤器可以在中的数据的多个维度(行,列,数据版本)上进行对数据的筛选操作,也就是说过滤器最终能够筛选的数据能够细化到具体的一个存储单元格上(由行键,列明,时间戳定位)。通常来说,通过行键,值来筛选数据的应用场景较多。

1. RowFilter:筛选出匹配的所有的行,对于这个过滤器的应用场景,是非常直观的:使用BinaryComparator可以筛选出具有某个行键的行,或者通过改变比较运算符(下面的例子中是CompareFilter.CompareOp.EQUAL)来筛选出符合某一条件的多条数据,以下就是筛选出行键为row1的一行数据:

[java]view plain

⑺ 求教:怎样用hbase过滤器实现,一个列多列值

HBase为筛选数据提供了一组过滤器,通过这个过滤器可以在HBase中的数据的多回个维度(行,列,数据版本答)上进行对数据的筛选操作,也就是说过滤器最终能够筛选的数据能够细化到具体的一个存储单元格上(由行键,列明,时间戳定位)。

⑻ hbase如何创建多列簇

大数据时代,谁掌握了足够的数据,谁就有可能掌握未来,而其中的数据采集就是将来的流动资产积累。
几乎任何规模企业,每时每刻也都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的信息,但前提是如何获取大量有价值的数据。

⑼ 如何使用scala+spark读写hbase

公司有一些实时数据处理的项目,存储用的是hbase,提供实时的检索,当然hbase里面存储的数据模型都是简单的,复杂的多维检索的结果是在es里面存储的,公司也正在引入Kylin作为OLAP的数据分析引擎,这块后续有空在研究下。
接着上面说的,hbase存储着一些实时的数据,前两周新需求需要对hbase里面指定表的数据做一次全量的update以满足业务的发展,平时操作hbase都是单条的curd,或者插入一个批量的list,用的都是hbase的java api比较简单,但这次涉及全量update,所以如果再用原来那种单线程的操作api,势必速度回慢上许多。
关于批量操作Hbase,一般我们都会用MapRece来操作,这样可以大大加快处理效率,原来也写过MR操作Hbase,过程比较繁琐,最近一直在用scala做spark的相关开发,所以就直接使用scala+spark来搞定这件事了,当然底层用的还是Hbase的TableOutputFormat和TableOutputFormat这个和MR是一样的,在spark里面把从hbase里面读取的数据集转成rdd了,然后做一些简单的过滤,转化,最终在把结果写入到hbase里面。
整个流程如下:
(1)全量读取hbase表的数据
(2)做一系列的ETL
(3)把全量数据再写回hbase
核心代码如下:
//获取conf
val conf=HBaseConfiguration.create() //设置读取的表
conf.set(TableInputFormat.INPUT_TABLE,tableName) //设置写入的表
conf.set(TableOutputFormat.OUTPUT_TABLE,tableName)//创建sparkConf
val sparkConf=new SparkConf() //设置spark的任务名
sparkConf.setAppName("read and write for hbase ") //创建spark上下文
val sc=new SparkContext(sparkConf)
//为job指定输出格式和输出表名

val newAPIJobConfiguration1 = Job.getInstance(conf)
newAPIJobConfiguration1.getConfiguration().set(TableOutputFormat.OUTPUT_TABLE, tableName)
newAPIJobConfiguration1.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

//全量读取hbase表
val rdd=sc.newAPIHadoopRDD(conf,classOf[TableInputFormat]
,classOf[ImmutableBytesWritable]
,classOf[Result]
)
//过滤空数据,然后对每一个记录做更新,并转换成写入的格式
val final_rdd= rdd.filter(checkNotEmptyKs).map(forDatas)
//转换后的结果,再次做过滤
val save_rdd=final_rdd.filter(checkNull)
//最终在写回hbase表
save_rdd.saveAsNewAPIHadoopDataset(newAPIJobConfiguration1.getConfiguration)
sc.stop()

从上面的代码可以看出来,使用spark+scala操作hbase是非常简单的。下面我们看一下,中间用到的几个自定义函数:
第一个:checkNotEmptyKs
作用:过滤掉空列簇的数据
def checkNotEmptyKs(f:((ImmutableBytesWritable,Result))):Boolean={ val r=f._2 val rowkey=Bytes.toString(r.getRow) val map:scala.collection.mutable.Map[Array[Byte],Array[Byte]]= r.getFamilyMap(Bytes.toBytes("ks")).asScala if(map.isEmpty) false else true
}

第二个:forDatas
作用:读取每一条数据,做update后,在转化成写入操作
def forDatas(f: (ImmutableBytesWritable,Result)): (ImmutableBytesWritable,Put)={ val r=f._2 //获取Result
val put:Put=new Put(r.getRow) //声明put
val ks=Bytes.toBytes("ks") //读取指定列簇
val map:scala.collection.mutable.Map[Array[Byte],Array[Byte]]= r.getFamilyMap(ks).asScala
map.foreach(kv=>{//遍历每一个rowkey下面的指定列簇的每一列的数据做转化
val kid= Bytes.toString(kv._1)//知识点id
var value=Bytes.toString(kv._2)//知识点的value值
value="修改后的value"
put.addColumn(ks,kv._1,Bytes.toBytes(value)) //放入put对象
}
) if(put.isEmpty) null else (new ImmutableBytesWritable(),put)

}

第三个:checkNull 作用:过滤最终结果里面的null数据
def checkNull(f:((ImmutableBytesWritable,Put))):Boolean={ if(f==null) false else true
}

上面就是整个处理的逻辑了,需要注意的是对hbase里面的无效数据作过滤,跳过无效数据即可,逻辑是比较简单的,代码量也比较少。

⑽ hbase 多条件查询or 怎么过滤掉不需要查的列

hbase的region是按行划分,而非按列,如果你读取指定一行的所有列数据,regionServer虽然无法保证你的所有数据都在一个HFile中,但是至少是在一个Region中。但是具体的HFile所在的hdfs的节点那就不是HBase关心的事了,因为HBase的存储是依赖与hdfs,所以底层存储读取的事会由NameNode操心,NameNode会考虑就近原则,而提供最高效的数据读取策略。
你的数据传输是必然,但是HBase不会计算,计算是发生在你将想要的数据获取到之后再自行进行计算的。你读取大量数据必然会有大量数据传输,HBase只是将提供了一种高效的数据读取策略,尽量减小数据传输量

阅读全文

与hbase列簇过滤器相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582