❶ Ze Wave Quantx是什么牌子的手表大神们帮帮忙
楼主你好,我在网购经验比较多,网上的东西真的便宜很多,选购也很方便,我的经验分享: www.tbbuy.hkk.hk (这是个转链接,转到我博客的,请放心点击)... o(∩_∩)o希望对您有帮助,希望采纳我哦~
❷ 选股策略回测用 Matlab 好还是用 Python 好
首先十年的日级别数据量的确不大,使用Python来说的话不应该出现memoryerror,应该是在编程方面需要再多留意,我们在Ricequant上使用的分钟数据大概是200-300个GB左右,也是Python和Java共同合作完成的。
语言只是一个语言,兴许会有各种语法的不同,但是在谈语言的时候我们需要了解背后的工具箱和社区,以及它为什么处理一些事情比另外的一些语言要好。
本身Python初期用来做金融回测等是应该被放弃的,用来开发策略也应该是被放弃的,因为相比matlab的矩阵运算来做开发,实在是太方便了。只不过后来Python推出了series、pandas等一系列的强悍library,pandas的语法基本在“无耻”地模仿matlab和R,而pandas的开发者正是美国大名鼎鼎的对冲基金AQR,因此使data crunching和对数据的一些操作大大便利,此外,又包装了海量的开源社区的数学和科学计算库,也能处理各种的machin learning等等的问题。
从科学计算的语言的发展来看,从最初的人们对浮点数计算的需求加入了fortran,再一路进行,让工具更加的让科学计算容易再容易(Python也封装了大量早期的数学家们用fortran写的数学计算基础库,这些经历了几十年的考验、加速等等):
numpy: basic array manipulation - 基础的数组处理
scipy: scientific computing in python, including signal processing and optimization - 科学计算,包括信号处理和优化等
matplotlib: visualization and plotting - 几行代码就可以做图形化显示了
IPython: write and run python code interactively in a shell or a notebook - 互动式编程环境,这是能将来替代掉matlab的一个必备,即在一行一行代码的输入、显示过程中学习、改进
pandas: data manipulation - 最重要的矩阵运算等
scikit-learn: machine learning - 机器学习
但是随着以后的发展Python的开源属性就会体现的越来越强大,可以让更多的人享受到其便利和贡献进来,包括Quantopian也放出了zipline的python回测框架,只需要引入yahoo数据即可进行回测,并且Python的速度由于跟C的很好的结合可以达到非常快的速度,而且可以将来和其他系统很容易整合对接实盘交易接口。
由于欧美已经有很多的投行和对冲基金在往Python的技术栈靠拢,因此选择了Python即掌握了一门重要的工具,并且无需跟一家私有化公司进行捆绑。
当然,最后的最后,所有的python回测你都可以来Ricequant - Beta上完成,我们支持海量的市场、财务数据,还有不断加入的和大数据公司合作的舆情数据等等,同时策略回测完还可以做实时模拟交易,享受到实时数据的计算。在云平台上已经支持了几乎所有的Python科学计算库,无需花时间安装、测试等等。
❸ A股量化交易回测引擎哪家做的比较好
看到楼上的回答,我来介绍一下JoinQuant吧。
不同于传统的量化工具,JoinQuant采用基础功能免费专+互联网模式+云平台+强大的社区属的模式来做量化平台。目的在降低量化交易的门槛,让人人都能够接触并成为宽客。
目前我们沉淀了一定的策略库,如:
MACD、KDJ、指数平滑均线、上影线与下影线、羊驼、布林线、威廉指标、均线策略等等。
可以直接登录JoinQuant,在社区中一键克隆。
JoinQuant是为量化爱好者(宽客)量身打造的云平台,我们为您提供精准的回测功能、高速实盘交易接口、易用的API文档、由易入难的策略库,便于您快速实现、使用自己的量化交易策略。
我们的创始团队具有丰富的金融、互联网从业经验,既有超过10年炒股经验、持续跑赢大盘的炒股大师,也有多年从事基金、证券行业的金融精英,还有BAT的技术大牛,我们致力于打造最高效、易用的量化交易平台。
❹ 量化策略一般用什么平台回测分别有什么优劣势
盈时量化策略回测平台,不会编程也能玩转量化。
盈时“策略机器人”集策略智能生成版、权策略评估、筛选优化、批量生成等功能于一体的交互式策略生成平台。平台以计算机智能生成算法为核心,使用了机器学习、模式识别、统计学、可视化技术等人工智能技术,包含策略构建模块、混编计算模块、策略绩效优化模块等组件,在策略优化方面使用了高效的遗传编程与NSGA-II等算法,进而充分利用CPU多核心性能,实现多进程同步高效生成策略。
语言:Python
适用人群:期货投资者(有无编程基础都可)
数据库:期货
回测用时:需要排队分钟记
支持的功能:支持将策略使用在交易开拓者的平台,属于实盘交易。策略给出建议,但需要自己手动确定进行买卖。
自动生成策略原理与简介:通过设置参数,运用机器学习的方法,一键生成源码策略。
备注:国内首个利用深度学习的人工智能量化平台,不懂编程也能做量化。
盈时,专注于为客户提供高品质的量化交易技术咨询服务和领先的量化交易产品,是一家从事金融数据分析、金融软件开发、程序化交易算法与交易策略研究等业务的科技公司。
❺ 选股策略回测用 Matlab 好还是用 Python 好
语言就是用来干活的,中间文件用HDF5或者csv转存,需要时间序列分析的时候上内R.毕竟Python的sm库还是很烂的容,但是PCA和大量的多因子计算,Python R MATLAB都差不多。
回测讲究并发效率和一些多参数回测的参数调优以及一些MC方法的估计时,py运行效率(相对于MATLAB)会高一些
总体来说,别太把语言当回事,就跟吃饭用筷子还是勺子还是叉子,要根据食材来