① 怎麼用python進行數學計算
用numpy,scipy等。
安裝後
import numpy
import scipy
便可以進行線性代數矩陣運算,統計運算等。
② python怎麼把輸入的數值代入公式計算
過程如下:
1、a=int(input("Inputanum:"))#python3.X
2、b=int(input("Inputanothernum:"))
3、c=a/(a*b)
Python為一種跨平台的計算機程序設計語言。是一種面向對象的動態類型語言,最初被設計用於編寫自動化腳本(shell)。
(2)怎麼用python計算回數擴展閱讀:
python的控制語句:
1、if語句,當條件成立時運行語句塊。經常與else,elif(相當於else if) 配合使用。
2、for語句,遍歷列表、字元串、字典、集合等迭代器,依次處理迭代器中的每個元素。
3、while語句,當條件為真時,循環運行語句塊。
4、try語句,與except,finally配合使用處理在程序運行中出現的異常情況。
5、class語句,用於定義類型。
6、def語句,用於定義函數和類型的方法。
7、pass語句,表示此行為空,不運行任何操作。
③ 求問怎麼用python返回一個字元串中的數字之和謝謝!
defsumDigits(s):
try:
t=0
foriins:
#print(i)
ifi.isdigit():
t+=int(i)
returnt
except:
print("Error")
st=input()
print(sumDigits2(st))
④ python中如何返回數值的絕對值
python中返回數值的絕對值的步驟如下:
1.第一步,定義一個變數a並調用abs()方法獲取0的絕對值,返回對應的絕對值。
⑤ 用python寫的函數判斷一個數是否是回數
可以直接把函數放到if後面當作條件,如果為空的話判斷結果是false,例如: def test(): return None if test(): print Trueelse: print False
⑥ python 函數的返回值求和
關於函數的返回求數值,這你看看網上的一些介介紹吧,多關於關於這方面。
⑦ python得到回數
把n轉換為字元串,對比對稱的兩個位置的字元是否一樣
filter函數的兩個參數一個是篩選的方法,一個是篩選的范圍
不過貌似is_palindrome有問題,不能在for里直接return吧
⑧ python多元線性回歸怎麼計算
1、什麼是多元線性回歸模型?
當y值的影響因素不唯一時,採用多元線性回歸模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的銷售額可能不電視廣告投入,收音機廣告投入,報紙廣告投入有關系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas來讀取數據
pandas 是一個用於數據探索、數據分析和數據處理的python庫
[python]view plain
importpandasaspd
[html]view plain
<prename="code"class="python">#
data=pd.read_csv('/home/lulei/Advertising.csv')
#displaythefirst5rows
data.head()
上面代碼的運行結果:
上面顯示的結果類似一個電子表格,這個結構稱為Pandas的數據幀(data frame),類型全稱:pandas.core.frame.DataFrame.
pandas的兩個主要數據結構:Series和DataFrame:
Series類似於一維數組,它有一組數據以及一組與之相關的數據標簽(即索引)組成。
DataFrame是一個表格型的數據結構,它含有一組有序的列,每列可以是不同的值類型。DataFrame既有行索引也有列索引,它可以被看做由Series組成的字典。
[python]view plain
#displaythelast5rows
data.tail()
只顯示結果的末尾5行
[html]view plain
#checktheshapeoftheDataFrame(rows,colums)
data.shape
查看DataFrame的形狀,注意第一列的叫索引,和資料庫某個表中的第一列類似。
(200,4)
3、分析數據
特徵:
TV:對於一個給定市場中單一產品,用於電視上的廣告費用(以千為單位)
Radio:在廣播媒體上投資的廣告費用
Newspaper:用於報紙媒體的廣告費用
響應:
Sales:對應產品的銷量
在這個案例中,我們通過不同的廣告投入,預測產品銷量。因為響應變數是一個連續的值,所以這個問題是一個回歸問題。數據集一共有200個觀測值,每一組觀測對應一個市場的情況。
注意:這里推薦使用的是seaborn包。網上說這個包的數據可視化效果比較好看。其實seaborn也應該屬於matplotlib的內部包。只是需要再次的單獨安裝。
[python]view plain
importseabornassns
importmatplotlib.pyplotasplt
#ots
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8)
plt.show()#注意必須加上這一句,否則無法顯示。
[html]view plain
這里選擇TV、Radio、Newspaper作為特徵,Sales作為觀測值
[html]view plain
返回的結果:
[python]view plain
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8,kind='reg')
plt.show()
結果顯示如下:
4、線性回歸模型
優點:快速;沒有調節參數;可輕易解釋;可理解。
缺點:相比其他復雜一些的模型,其預測准確率不是太高,因為它假設特徵和響應之間存在確定的線性關系,這種假設對於非線性的關系,線性回歸模型顯然不能很好的對這種數據建模。
線性模型表達式:y=β0+β1x1+β2x2+...+βnxn其中
y是響應
β0是截距
β1是x1的系數,以此類推
在這個案例中:y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper
(1)、使用pandas來構建X(特徵向量)和y(標簽列)
scikit-learn要求X是一個特徵矩陣,y是一個NumPy向量。
pandas構建在NumPy之上。
因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解這種結構。
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
X=data[['TV','Radio','Newspaper']]
#printthefirst5rows
printX.head()
#checkthetypeandshapeofX
printtype(X)
printX.shape
輸出結果如下:
[python]view plain
#selectaSeriesfromtheDataFrame
y=data['Sales']
#
y=data.Sales
#printthefirst5values
printy.head()
輸出的結果如下:
(2)、構建訓練集與測試集
[html]view plain
<prename="code"class="python"><spanstyle="font-size:14px;">##構造訓練集和測試集
fromsklearn.cross_validationimporttrain_test_split#這里是引用了交叉驗證
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=1)
#default split is 75% for training and 25% for testing
[html]view plain
printX_train.shape
printy_train.shape
printX_test.shape
printy_test.shape
輸出結果如下:
註:上面的結果是由train_test_spilit()得到的,但是我不知道為什麼我的版本的sklearn包中居然報錯:
處理方法:1、我後來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最後附上。)
(3)sklearn的線性回歸
[html]view plain
fromsklearn.linear_modelimportLinearRegression
linreg=LinearRegression()
model=linreg.fit(X_train,y_train)
printmodel
printlinreg.intercept_
printlinreg.coef_
輸出的結果如下:
[html]view plain
#
zip(feature_cols,linreg.coef_)
輸出如下:
y=2.668+0.0464∗TV+0.192∗Radio-0.00349∗Newspaper
如何解釋各個特徵對應的系數的意義?
對於給定了Radio和Newspaper的廣告投入,如果在TV廣告上每多投入1個單位,對應銷量將增加0.0466個單位。就是加入其它兩個媒體投入固定,在TV廣告上每增加1000美元(因為單位是1000美元),銷量將增加46.6(因為單位是1000)。但是大家注意這里的newspaper的系數居然是負數,所以我們可以考慮不使用newspaper這個特徵。這是後話,後面會提到的。
(4)、預測
[python]view plain
y_pred=linreg.predict(X_test)
printy_pred
[python]view plain
printtype(y_pred)
輸出結果如下:
5、回歸問題的評價測度
(1) 評價測度
對於分類問題,評價測度是准確率,但這種方法不適用於回歸問題。我們使用針對連續數值的評價測度(evaluation metrics)。
這里介紹3種常用的針對線性回歸的測度。
1)平均絕對誤差(Mean Absolute Error, MAE)
(2)均方誤差(Mean Squared Error, MSE)
(3)均方根誤差(Root Mean Squared Error, RMSE)
這里我使用RMES。
[python]view plain
<prename="code"class="python">#計算Sales預測的RMSE
printtype(y_pred),type(y_test)
printlen(y_pred),len(y_test)
printy_pred.shape,y_test.shape
fromsklearnimportmetrics
importnumpyasnp
sum_mean=0
foriinrange(len(y_pred)):
sum_mean+=(y_pred[i]-y_test.values[i])**2
sum_erro=np.sqrt(sum_mean/50)
#calculateRMSEbyhand
print"RMSEbyhand:",sum_erro
最後的結果如下:
(2)做ROC曲線
[python]view plain
importmatplotlib.pyplotasplt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label="predict")
plt.plot(range(len(y_pred)),y_test,'r',label="test")
plt.legend(loc="upperright")#顯示圖中的標簽
plt.xlabel("thenumberofsales")
plt.ylabel('valueofsales')
plt.show()
顯示結果如下:(紅色的線是真實的值曲線,藍色的是預測值曲線)
直到這里整個的一次多元線性回歸的預測就結束了。
6、改進特徵的選擇
在之前展示的數據中,我們看到Newspaper和銷量之間的線性關系竟是負關系(不用驚訝,這是隨機特徵抽樣的結果。換一批抽樣的數據就可能為正了),現在我們移除這個特徵,看看線性回歸預測的結果的RMSE如何?
依然使用我上面的代碼,但只需修改下面代碼中的一句即可:
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
#X=data[['TV','Radio','Newspaper']]#只需修改這里即可<prename="code"class="python"style="font-size:15px;line-height:35px;">X=data[['TV','Radio']]#去掉newspaper其他的代碼不變
# print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape
最後的到的系數與測度如下:
LinearRegression(_X=True, fit_intercept=True, normalize=False)
然後再次使用ROC曲線來觀測曲線的整體情況。我們在將Newspaper這個特徵移除之後,得到RMSE變小了,說明Newspaper特徵可能不適合作為預測銷量的特徵,於是,我們得到了新的模型。我們還可以通過不同的特徵組合得到新的模型,看看最終的誤差是如何的。
備註:
之前我提到了這種錯誤:
註:上面的結果是由train_test_spilit()得到的,但是我不知道為什麼我的版本的sklearn包中居然報錯:
處理方法:1、我後來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最後附上。)
這里我給出我自己寫的函數: