❶ 基于RLS算法和LMS的自适应滤波器的MATLAB程序
% RLS算法
randn('seed', 0) ;
rand('seed', 0) ;
NoOfData = 8000 ; % Set no of data points used for training
Order = 32 ; % 自适应滤波权数
Lambda = 0.98 ; % 遗忘因子
Delta = 0.001 ; % 相关矩阵R的初始化
x = randn(NoOfData, 1) ;%高斯随机系列
h = rand(Order, 1) ; % 系统随机抽样
d = filter(h, 1, x) ; % 期望输出
% RLS算法的初始化
P = Delta * eye ( Order, Order ) ;%相关矩阵
w = zeros ( Order, 1 ) ;%滤波系数矢量的初始化
% RLS Adaptation
for n = Order : NoOfData ;
u = x(n:-1:n-Order+1) ;%延时函数
pi_ = u' * P ;%互相关函数
k = Lambda + pi_ * u ;
K = pi_'/k;%增益矢量
e(n) = d(n) - w' * u ;%误差函数
w = w + K * e(n) ;%递归公式
PPrime = K * pi_ ;
P = ( P - PPrime ) / Lambda ;%误差相关矩阵
w_err(n) = norm(h - w) ;%真实估计误差
end ;
% 作图表示结果
figure ;
plot(20*log10(abs(e))) ;%| e |的误差曲线
title('学习曲线') ;
xlabel('迭代次数') ;
ylabel('输出误差估计') ;
figure ;
semilogy(w_err) ;%作实际估计误差图
title('矢量估计误差') ;
xlabel('迭代次数') ;
ylabel('误差权矢量') ;
%lms 算法
clear all
close all
hold off%系统信道权数
sysorder = 5 ;%抽头数
N=1000;%总采样次数
inp = randn(N,1);%产生高斯随机系列
n = randn(N,1);
[b,a] = butter(2,0.25);
Gz = tf(b,a,-1);%逆变换函数
h= [0.0976;0.2873;0.3360;0.2210;0.0964;];%信道特性向量
y = lsim(Gz,inp);%加入噪声
n = n * std(y)/(10*std(n));%噪声信号
d = y + n;%期望输出信号
totallength=size(d,1);%步长
N=60 ; %60节点作为训练序列
%算法的开始
w = zeros ( sysorder , 1 ) ;%初始化
for n = sysorder : N
u = inp(n:-1:n-sysorder+1) ;% u的矩阵
y(n)= w' * u;%系统输出
e(n) = d(n) - y(n) ;%误差
if n < 20
mu=0.32;
else
mu=0.15;
end
w = w + mu * u * e(n) ;%迭代方程
end
%检验结果
for n = N+1 : totallength
u = inp(n:-1:n-sysorder+1) ;
y(n) = w' * u ;
e(n) = d(n) - y(n) ;%误差
end
hold on
plot(d)
plot(y,'r');
title('系统输出') ;
xlabel('样本')
ylabel('实际输出')
figure
semilogy((abs(e))) ;% e的绝对值坐标
title('误差曲线') ;
xlabel('样本')
ylabel('误差矢量')
figure%作图
plot(h, 'k+')
hold on
plot(w, 'r*')
legend('实际权矢量','估计权矢量')
title('比较实际和估计权矢量') ;
axis([0 6 0.05 0.35])
❷ 自适应过滤法只能预测一期的数据吗
自适应量化是使量化级差跟随输入信号变化,使不同大小的信号平均量化误差最小,从而提高信噪比;自适应预测的基本思想是使预测系数跟随输入信号而变化,从而保证预测值与样值最接近,即预测误差最小。
❸ 自适应过滤法的缺点是什么呀,急!!!
自适应过滤法对处理具有长期趋势性变动或季节性变动的确定型时间序列比较有优势。对于有线性趋势的数据,可以应用差分方法消除数据的趋势。
❹ 急求:自适应联邦滤波算法的matlab仿真程序代码
clear
fs=1000;%采样频率1000hz
N=500;%采样点数
t=(0:1:N-1)/fs;
f=10;%正弦信号频率10hz
x=sin(2*pi*f*t)+randn(size(t));%被随机信号干扰的正弦信号
b = fir1(31,0.5); %由b = fir1(31,0.5); 产生32阶滤波器系数
n = 0.1*randn(1,500); % 通过以上滤波系统所加入的噪声
d = filter(b,1,x)+n; % 通过滤波器后的期望信号
delta = 0.005; % 设置自适应滤波器其中一个步长因子为0.005
ha = adaptfilt.lms(32,delta);%求出系统的滤波器系数
[y,e] = filter(ha,x,d);
delta0=0.001; %另一个步长因子为0.001作对比
ha=adaptfilt.lms(32,delta0);
[y0,e0]=filter(ha,x,d);
m=1:500;
figure(1);
plot(m,x,'g');
figure(2);
plot(m,e,'r',m,e0);
legend('delta=0.001','delta=0.005')
% subplot(2,1,1)
% plot(m,e0)
%
以上是基本的LMS算法
% 滤波型LMS算法滤波
M = 20; % 运行次数
N = 1000; % 信号的长度
n = 0:N-1;
s = sin(2*pi*n/10); % 初始信号
u = s + 0.36*randn(1,N); % 叠加噪声后的信号
% 信号叠加噪声波形图
figure(1);
plot(n,u);
title('信号叠加噪声波形图');
xlabel('n');ylabel('u');
y = zeros(1,N); % 初始化经过自适应滤波器后的信号为零向量
w = zeros(1,N); % 初始化自适应滤波器的权向量为零向量
e = zeros(N); % 初始化误差e(n)的为零向量
a = zeros(1,N); % 初始化前向滤波器的权向量为零向量
vare = zeros(N); % 初始化误差的平方e(n)^2的为零向量
estd = zeros(N); % 初始化均方误差E{e(n)^2}的为零向量
vare1 = ones(1,N); % 初始化误差的平方e(n)^2的为1向量
estd1 = ones(1,N); % 初始化均方误差E{e(n)^2}的为1向量
k = 10; % 自适应滤波器的阶数
e1 = zeros(1,N); % 初始化前向预测误差e1为零向量
e2 = zeros(1,N); % 初始化滤波向量e为零向量
y(1:k) = u(1:k);
mu0 = 0.0065; % 初始更新步长因子
% 初始化前向滤波器的权向量
a(1:11) = [ 0.1642 , 0.1341 , 0.0529,-0.0624 , -0.1586 ,-0.1932 , -0.1555 , -0.0599 , 0.0584, 0.1229 , 0.1106];
% 滤波型LMS算法滤波
for j = (k + 1):M
u = s + 0.36*randn(1,N); % 叠加噪声后的信号
for n=(k+2):N
mu = mu0/(1 + (n/100)); % 先搜索后收敛步长因子
e(j,n) = s(n) - w((n-1):(n+9)) * u(n:-1:(n-10))'; % 误差
e1(n) = u(n) + a((n-10):n)*u((n-1):-1:(n-11))'; % 前向预测误差
e2(n) = e(j,n) + a((n-10):n)*e(j,(n:-1:(n-10)))'; % 滤波
w(n:(n+10)) = w((n-1):(n+9)) + mu*e1(n:-1:(n-10))*e2(n); % 更新自适应滤波器的权向量
y(n) = w((n):(n+10)) * u((n):-1:(n-10))'; % 经过自适应滤波器后的信号
vare(j,n) =e(j,n)^2; % 误差的平方e(n)^2
estd(j,n) = vare(j,(1:n))*vare(j,(1:n))'/n; % 均方误差E{e(n)^2}
end
end
vare1 = (vare1*vare)/M; % 统计平均意义下e(n)^2
estd1 = (estd1*estd)/M; % 统计平均意义下学习曲线
% 滤波型LMS自适应滤波输出
figure(2);
plot(y);
title('mu = 0.0065时滤波型LMS自适应滤波输出');
xlabel('n');ylabel('y');
% 滤波型LMS自适应滤波器的e(n)^2的曲线
figure(3);
plot(vare1);
title('滤波型LMS自适应滤波器的e(n)^2的曲线 ');
xlabel('n');ylabel('e(n)^2');
% 滤波型LMS自适应滤波器的学习曲线图
figure(4);
plot(estd1);
title('滤波型LMS自适应滤波器的学习曲线图 ');
xlabel('n');ylabel('E[e(n)^2]');
希望可以帮到你
❺ 自适应过滤法完整正确c++程序
自适应过滤法???抱歉我还没学过!一、自适应过滤法就是从自回归系数的一组初始估计值开始利用公式
逐次迭代,不断调整,以实现自回归系数的最优化。
自适应过滤法的基本步骤有:
(1)首先确定模型阶数P
(2)选择合适的滤波参数k
(3)计算每一次残差e
(4)根据残差e以及调整公式计算下一轮的系数
(5)迭代直到取得合适的系数
二、自适应过滤法的一个很重要的特点是经过逐次迭代,自回归系数可以不断调整,以使自回归系数达到最优化。
自适应过滤法优点是:
(1)简单易行,可采用标准程序上机运算。
(2)适用于数据点较少的情况。
(3)约束条件较少
(4)具有自适应性,他能自动调整回归系数,是一个可变系数的数据模型。
三、使用自适应过滤法应选择好滤波常数k,这样不仅可使迭代次数不太多,而且可以确保MSE取值最小。
滤波常数k的选择原则有:
(1)k越接近于1可以减少迭代次数
(2)为了避免太大的k而导致的误差序列的发散性,k应小于或等于1/P
(3)根据Box-Jenkins方法的基本知识,
,
而Windrow将其表述为:
四、对原始数列做标准化处理很重要,这样可加快迭代的收敛速度,并使取得的误差从平均意义上逐渐减小。
五、学会使用计算机来进行自适应过滤法的计算,这样可使自适应过滤法的应用变得简单易行。
❻ 各位 有谁知道自适应过滤法的MATLAB的程序
(1)首先确定模型阶数P
(2)选择合适滤波参数k
(3)计算每残差e
(4)根据残差e及调整公式计算轮系数
(5)迭代直取合适系数!
❼ 预测方法中自适应过滤法的一段C++程序,哪位大虾帮我看看,我这个程序没有错误,但是不能输入数据
gezhongshuju
❽ 自适应过滤法的应用
用自适应过滤法调整权数的方法如下:基于不断发现预测值与观测值之间的误差,然后对预测模型的权数加以调整,以缩小误差,并反复循环,最终使误差为零。调整权数的公式是按数学中最优化原理的最速下降法给出的。
一、自适应过滤法就是从自回归系数的一组初始估计值开始利用公式
逐次迭代,不断调整,以实现自回归系数的最优化。
自适应过滤法的基本步骤有:
(1)首先确定模型阶数P
(2)选择合适的滤波参数k
(3)计算每一次残差e
(4)根据残差e以及调整公式计算下一轮的系数
(5)迭代直到取得合适的系数
二、自适应过滤法的一个很重要的特点是经过逐次迭代,自回归系数可以不断调整,以使自回归系数达到最优化。
自适应过滤法优点是:
(1)简单易行,可采用标准程序上机运算。
(2)适用于数据点较少的情况。
(3)约束条件较少
(4)具有自适应性,他能自动调整回归系数,是一个可变系数的数据模型。
三、使用自适应过滤法应选择好滤波常数k,这样不仅可使迭代次数不太多,而且可以确保MSE取值最小。
滤波常数k的选择原则有:
(1)k越接近于1可以减少迭代次数
(2)为了避免太大的k而导致的误差序列的发散性,k应小于或等于1/P
(3)根据Box-Jenkins方法的基本知识,
,
而Windrow将其表述为:
四、对原始数列做标准化处理很重要,这样可加快迭代的收敛速度,并使取得的误差从平均意义上逐渐减小。
五、学会使用计算机来进行自适应过滤法的计算,这样可使自适应过滤法的应用变得简单易行。
❾ 自适应滤波的几种典型的自适应滤波算法
对自适应滤波算法 的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波算法广泛应用于系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测、自适应天线阵等诸多领域中。总之,寻求收敛速度快,计算复杂性低,数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。虽然线性自适应滤波器和相应的算法具有结构简单、计算复杂性低的优点而广泛应用于实际,但由于对信号的处理能力有限而在应用中受到限制。由于非线性自适应滤波器,如Voletrra滤波器和基于神经网络的自适应滤波器,具有更强的信号处理能力,已成为自适应信号处理中的一个研究热点。其中较典型的几种算法包括: LMS自适应滤波算法 RLS自适应滤波算法 变换域自适应滤波算法 仿射投影算法 共扼梯度算法 基于子带分解的自适应滤波算法 基于QR分解的自适应滤波算法 算法性能评价
变步长的自适应滤波算法 虽然解决了收敛速度、时变系统跟踪速度与收敛精度方面对算法调整步长因子u的矛盾,但变步长中的其它参数的选取还需实验来确定,应用起来不太方便。对RLS算法的各种改进,其目的均是保留RLS算法收敛速度快的特点而降低其计算复杂性。变换域类算法亦是想通过作某些正交变换使输入信号自相关矩阵的特征值发散程度变小,提高收敛速度。而仿射投影算法的性能介于LMS算法和RLS算法之间。共扼梯度自适应滤波算法的提出是为了降低RLS类算法的复杂性和克服某些快速RLS算法存在的数值稳定性问题。信号的子带分解能降低输入信号的自相关矩阵的特征值发散程度,从而加快自适应滤波算法的收敛速度,同时便于并行处理,带来了一定的灵活性。矩阵的QR分解具有良好的数值稳定性。
❿ 自适应滤波器算法h(n+1)=h(n)+2μx(n)e(n)用C语言完成 其中函数问题
#include <stdio.h>
long float fun(int n) //求阶乘函数
{
if(n>1)
return n*fun(n-1);
else
return 1;
}
long float fun1(int x,int n) //求x的n次方函数
{
long float i;
long float sum=1;
if(n>=1)
for(i=1;i<=n;i++)
sum*=x;
else
sum=1;
return sum;
}
main()
{
int x,i=1;
long float sum=1,s;
printf("请输入x:\n");
scanf("%d",x);
for(i=1;i<150;i++) //n最大取值为149
sum+=fun1(x,i)/fun(i);
printf("e的%d次方的值为:%f\n", x,sum);
}