㈠ 名词解释:什么是搜索引擎
搜索引擎(英语:search engine)是一种信息检索系统,旨在协助搜索存储在计算机系统中的信息。搜索结果一般被称为“hits”,通常会以表单的形式列出。网络搜索引擎是最常见、公开的一种搜索引擎,其功能为搜索万维网上储存的信息。
搜索引擎为一组项目提供了一个接口,使用户能够指定关于感兴趣的项目的标准,并让引擎找到匹配的项目,这些标准称为搜索查询。在文本搜索引擎的情况下,搜索查询通常表示为识别一个或多个文档可能包含的期望概念的一组单词。
有多种样式的搜索查询语法在严格性上有差异。它也可以在以前的站点中搜索搜索引擎中的名称。而一些文本搜索引擎要求用户输入由白色空格分隔的两个或三个字,其他搜索引擎可以使用户能够指定整个文档,图片,声音和各种形式的自然语言。
一些搜索引擎对搜索查询进行改进,以增加通过称为查询扩展的过程提供质量集合的可能性。查询理解方法可用于标准化查询语言。
(1)云计算单词去重离子扩展阅读:
一个完整的搜索引擎需要有网页爬取和收录,建立索引,查询词分析,搜索排序,推荐系统五个部分组成。
1、网页爬取和收录。
网络爬虫技术是网页爬取的核心技术,可以通过编写一定的程序或者脚本来对互联网的信息进行抓取。在网页抓取之后,要构建相应的数据库来存储我们爬取的网页信息。
但是互联网的信息具有冗余性,主要原因是各大网站也都会在后台进行爬虫爬取,他们也会通过爬虫来检测一些热点的内容或者文章,然后爬取其信息并对格式进行重新的组织,但其实网页的内容几乎都是一致的。
所以在收录爬虫爬取的网页信息之前,我们还要加入一个关键的环节——网页去重,来确保我们数据库中网页的唯一性。
2、建立索引
在抓取了网页的信息之后,需要对网页的信息进行解析,抽取到网页的主题内容和类别信息。其主要涉及的技术为文本识别和文本分类技术。
网页解析后的输出往往是一些结构化的信息(每个网页的信息完整度是不同的,需要统一对数据进行结构化操作),一般的结构化信息包括网页的URL、网页编码、网页标题、作者、生成时间、类别信息、摘要等等。
在获取了网页结构化信息后,就要构建相应的索引了。为了加快响应用户査询的速度,网页内容通过"倒排索引"这种高效查询数据结构来保存,而网页之间的链接关系也会予以保存。
之所以要保存链接关系,是因为这种关系 在网F相关性排序阶段是可利用的,通过"链接分析"可以判断页面的相对重要性,对于为用 户提供准确的搜索结果帮助很大。
由于互联网的网页信息是海量的,所以搜索引擎的构建离不开大数据处理平台和云计算技术,目前较为常用的大数据处理平台为Hadoop生态架构。
3、查询词分析。
查询词分析就是query分析或者query聚类。当搜索引擎接收到用户的査询词后,首先需要对查询词进行分析,希望能够结合查询词和用户信息来正确推导用户的真正搜索意图。
比如,一个用户输入的查询词为“养水仙花”,那么除了基本的内容匹配外,搜索引擎需要读懂用户,其实用户的查询词还可以这样被理解“水仙花的养法”,“水仙花好养不” 等等近意的查询词。
在此之后,首先在缓存中査找,搜索引擎的缓存系统存储了不同的查询意图对应的搜索结果,如果能够在缓存系统找到满足用户需求的信息,则可以直接将搜索结果返回给用户,这样既省掉了重复计算对资源的消耗,又加快了响应速度。
4、搜索排序
搜索引擎在分析了用户的查询词以后,如果缓存的信息无法满足用户的查询需求,搜索引擎要根据索引来查询数据库的网页内容,并根据网页内容与用户需求来进行网页排序。
网页排序需要众多的因素,其中最为主要的因素为网页内容与用户查询内容的相似度(匹配度),这个不难理解,搜索引擎的基本功能就是查询。
如果一个搜索引擎无法为用户提供用户需要查询的内容,那其也就不能称为是一个搜索引擎,所以网页内容与用户查询内容的相似度是网页排序的一个首要依据;
另外网页的重要程度也是以关键元素,一个网页的重要程度关乎了网页内容的质量,在满足用户需求的基础之上,用户更加希望获得高质量的内容,这是无可厚非的。
根据上述因素,搜索引擎对查询到的结果进行排序,然后展示给用户。
5、推荐系统
其实从不严格的角度来说,整个网页排序的过程就属于一种推荐策略。从严格意义上来说,推荐系统并不属于一个搜索引擎架构的必要环节,而且推荐系统在上述示意图中并没有显示。
但是一个优秀的搜索引擎不止要能分析出用户查询的基本需求,进一步来讲,要能了解到或者猜测用户的可能的下一步需求。
目前随着大数据的热潮,各大互联网公司和众多专家认为推荐系统是解决互联网大数据的一种有效途径。而且,最近越来越多个性化推荐知识受到了热捧。其实推荐系统在搜索引擎中往往是以中间页的形式展示的,它的主要作用就是为推荐系统进行导流。
参考资料来源:网络——搜索引擎
㈡ 大数据架构究竟用哪种框架更为合适
大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
㈢ 大数据与云计算相辅相成
大数据与云计算相辅相成
大数据的价值开始日益受到重视,人们对数据处理的实时性和有效性的要求也在不断提高。现在对大数据的应用己经不局限于BI(商业智能)领域,在公共服务、科学研究等各方面,大数据也都在发挥着巨大的影响力,而且应用面要宽得多。比如美国国家海洋和大气管理局尝试利用大数据方法协助进行气候、生态系统、天气和商业方面的研究一谷歌流感趋势则使用经过汇总的谷歌搜索数据来估测流感疫情。数据无疑已经成为信息社会日益重要的资源。
大数据的意义并不在于大容量、多样性等特征,而在于我们如何对数据进行管理和分析,以及因此而发掘出的价值。如果在分析处理上缺少相应的技术支撑,大数据的价值将无从谈起。
具体到企业而言,处于大数据时代的经营决策过程已经具备了明显的数据驱动特点,这种特点给企业的IT系统带来的是海量待处理的历史数据、复杂的数学统计和分析模型、数据之间的强关联性以及频繁的数据更新产生的重新评估等挑战。这就要求底层的数据支撑平台具备强大的通讯(数据流动和交换)能力、存储(数据保有)能力以及计算(数据处理)能力,从而保证海量的用户访问、高效的数据采集和处理、多模式数据的准确实时共享以及面对需求变化的快速响应。
传统的处理和分析技术在这些需求面前开始遭遇瓶颈,而云计算的出现,不仅为我们提供了一种挖掘大数据价值使其得以凸显的工具,也使大数据的应用具有了更多可能性。
云计算包含两方面的内容;服务和平台,所以云计算既是商业模式,也是计荞模式。比如美国加州大学伯克利分校在一篇关于云计算的报告中,就认为云计算既指在互联网上以服务形式提供的应用。也指在数据中心里提供这些服务的硬件和软件。
就目前技术发展来看,云计算以数据为中心,以虚拟化技术为手段来整合服务器、存储、网络、应用等在内的各种资源,并利用SOA架构为用户提供安全、可靠、便捷的各种应用数据服务;它完成了系统架构从组件走向层级然后走向资源池的过程,实现IT系统不同平台(硬件、系统和应用)层面的“通用”化,打破物理设备障碍,达到集中管理、动态调配和按需使用的目的。
借助“云”的力量,可以实现对多格式、多模式的大数据的统一管理、高效流通和实时分析,挖掘大数据的价值,发挥大数据的真正意义。
大数据对技术提出高要求
大数据处理首先是获取和记录数据;其次是完成数据的抽取、清洁和标注以及数据的整合、聚集和表达等重要的预处理或处理(取决于实际问题)工作;再次需要一个完整的数据分析步骤,通常包括数据过滤、数据摘要、数据分类或聚类等预处理过权最后进入分析阶段,在这个阶段,各种算法和计算工具会施加到数据上,以求能得到分析者想要看到的或者可以进行解释的结果。
涉及到庞大的数据量,这一整套处理流程在各个不同阶段都会对传统的技术手段提出挑战。比如,海量的网络化设备、海量的在线用户、不间断的网络联接,都在时刻生成大量的、多格式的内容数据和状态信息,这些经由各种客户端(网页、应用或是传感器等)采集而来的信息数据,连同成千上万的访问和操作请求,会以高并发的方式向系统服务器施加压力。
通常为了避免由于服务能力的不足而造成服务请求排队的问题,会来用负载均衡技术将单个服务器的压力进行分摊,大幅提高服务性能;在数据采集时,也会通过在采集端部署大量的数据库来对系统性能提供支撑,然后对采集到的数据(包括各种结构化、非结构化和半结构化数据等)进行数据清理、去重、正规化以及相应的格式转换处理。在按照预定规则进行过滤后,输出到分布式数据存储系统中进行存储,为之后的分析和展示做准备。
在分析阶段,为了完成数据挖掘的目的,通常需要处理海量的历史数据,构建复杂的数学统计和分析模型(比如计算冬天的气温水平对特定厚度的羽绒服销量的影响),并针对大量的结果之间的关联性做出高效正确的处理,同时还要支持数据更新带来的重新评估;而在展示阶段,则应当隐藏诸如数据存储拓扑和数据存储结构等实现细节,对业务应用暴露规范的数据访问接口,对复杂的数据访问需求提供透明支撑,大大减小业务应用的构建难度。
这些复杂的需求对技术实现和底层计算资源提出了高要求。所以,为应对这些复杂的大数据处理工作,需要从服务器、网络、存储、软件等各个环节构建一个兼具高可用性和高可靠性的系统环境,提供端到端的全面解决方案。
大数据与云计算相辅相成
传统的单机处理模式不但成本越来越高,而且不易扩展,并且随着数据量的递增、数据处理复杂度的增加,相应的性能和扩展瓶颈将会越来越大。在这种情况下,云计算所具备的弹性伸缩和动态调配、资源的虚拟化和系统的透明性、支持多租户、支持按量计费或按需使用,以及绿色节能等基本要素正好契合了新型大数据处理技术的需求;而以云计算为典型代表的新一代计算模式,以及云计算平台这种支撑一切上层应用服务的底层基础架构,以其高可靠性、更强的处理能力和更大的存储空间、可平滑迁移、可弹性伸缩、对用户的透明性以及可统一管理和调度等特性,正在成为解决大数据问题的未来计算技术发展的重要方向。
基于云计算技术构建的大数据平台,能够提供聚合大规模分布式系统中离散的通讯、存储和处理能力,并以灵活、可靠、透明的形式提供给上层平台和应用。它同时还提供针对海量多格式、多模式数据的跨系统、跨平台、跨应用的统一管理手段和高可用、敏捷响应的机制体系来支持快速变化的功能目标、系统环境和应用配置。
比如在基于云计算平台而构建的新型企业信息系统中,在以分布式集群技术构建高性能、高延展的存储平台之后,我们可以实现对不同业务应用中不同格式、不同访问模式的海量数据的统一存储,相关的数据分析系统则构建于分布式工作流和调度系统框架之上,采用分布式计算手段面向多模式海量数据提供数据的转换、关联、提取、聚合和数据挖掘等功能。在企业信息系统中经常提到的BI的具体业务功能,比如决策支撑、销售预测等,就可以由上层业务应用通过调用数据分析系统所提供的功能附加业务逻辑来实现。
云计算使大数据应用成为可能;没有云计算的出现,大数据将仍是空中楼阁,缺乏根基和落地可能。借助云计算技术,可以提高系统整体的弹性和灵活性,降低管理成本和风险,并且改进应用服务的可用性和可靠性;云计算不仅为大数据处理打造一个高效、可靠的系统环境,而且充分发挥云计算平台的优势,为大数据应用找到更多样化的出口。
如果说大数据是一座蕴含巨大价值的矿藏,云计算则可以被看作是采矿作业的得力工具;没有云计算的处理能力,大数据的信息沉淀再丰富,或许也只能望洋兴叹,入宝山而空手回;但从另外的角度说,云计算也是为了解决大数据等“大”问题发展而来的技术趋势,没有大数据的信息沉淀,云计算的功用将得不到完全发挥。因此,从整体上看,大数据与云计算是相辅相成的。
㈣ 云计算的海量数据挖掘工作是怎样实现的
FineBI数据挖掘的参数是针对整体的,且绝大部分参数设置都会根据当前的数据由机器给予较为恰当的默认值。数据分析人员不必对一种算法的原理了如指掌,而可以使用FineBI推荐的默认参数。而由于整个数据挖掘过程的简单性,也可以根据预览的挖掘结果调整参数,进行新的、更接近目标的挖掘过程。
㈤ 为什么打不开付款与配送 appleid也退出去重登了 网络设置也还原了 几乎方法都试了 还是进不去
常用解决方法:
1、进入手机的设置,选择iCloud,下移到最底选注销,这时会有提示,点确认。
2、退出iCloud后,重新按新建iCloud的方法,按提示用原来的iPhone手机的Apple ID 及密码输入即可。
3、也有可能是苹果服务器的问题,可以过段时间再试试,或者重启一下试试。
产生“iCloud连接超时/验证失败”的原因和解决方法:
1、本地网络故障。重新连接网络,或者采用其他网络形式连接。
2、iCloud帐户故障诊断。使用iOS设备时,未找到创建iCloud帐户的选项。确认您设备上目前运行的是iOS5或更高版本。如果不是,请在设备上进行安装并再次尝试创建iCloud帐户。
3、在iPhone、iPad或iPod touch上设置iCloud帐户期间尝试使用Apple ID登录时收到“鉴定失败”信息。前往“我的Apple ID”(appleid.apple.com/cn),点按“管理您的Apple ID”,然后尝试使用Apple ID登录。如果您无法登录,请按照上面提供的步骤来还原Apple ID帐户密码设置。
4、尝试从iPhone、iPad或iPod touch上登录iCloud时收到“不支持此Apple ID”的错误。根据您创建Apple ID的方式,可能无法使用当前Apple ID创建iCloud帐户。如果您的Apple ID能够iTunes Store、App Store、Game Center、FaceTime或其他Apple服务配合使用,则应该也能用iCloud。另外,如果在apple.com/jobs/cn上申请工作时创建了Apple ID,则Apple ID应该能用于iCloud。如果您的Apple ID无法与任何Apple服务配合使用,则可能与iCloud不兼容。请联系iCloud支持以获得帮助。
5、打开了备份的原因,把备份关了就正常了。在设置-icloud-备份-关闭iCloud云备份即可!
拓展资料
1、iCloud是苹果公司为苹果用户提供的一个私有云空间,方便苹果用户在不同设备间共享个人数据。
2、iCloud将苹果音乐服务、系统备份、文件传输、笔记本及平板设备产品线等元素有机的结合在了一起,而且联系非常紧密。
3、iCloud支持用户设备间通过无线方式同步和推送数据,比苹果传统的iTunes方案(需要数据线连接)更加容易操作,用户体验更加出色。iCloud是一个与以往云计算不同的服务平台,苹果提供的服务器不应该只是一个简单的存储介质,它还应该带给用户更多。