Ⅰ 結巴分詞獲取關鍵詞時怎麼過濾掉一些停用詞
是使用extract_tags函數,這個函數會根據TF-IDF演算法將特徵詞提取出來,在提取之前會去掉停用詞,可以人工指定停用詞字典,代碼如下:jieba.analyse.set_stop_words('D:\\Python27\\stopword.txt')tags=jieba.analyse.extract_tags(text,20)
Ⅱ 結巴分詞獲取關鍵詞時怎麼過濾掉一些停用詞
那麼採用TermQuery就可以了,比如你搜索的關鍵詞是「搜索引擎」;如果採用的分詞器的分詞結果不是「搜索引擎『這個詞這個要看你的搜索關鍵詞是什麼,而是」搜索「和」引擎「這,採用的分詞器是什麼,如果採用的分詞器的分詞結果就包含「搜索引擎『這個詞
Ⅲ 如何對excel表格里的詞結巴分詞python
#-*-coding:utf-8-*-
importjieba
'''''
Createdon2015-11-23
'''
defword_split(text):
"""
Splitatextinwords.
(word,location).
"""
word_list=[]
windex=0
word_primitive=jieba.cut(text,cut_all=True)
forwordinword_primitive:
iflen(word)>0:
word_list.append((windex,word))
windex+=1
returnword_list
definverted_index(text):
"""
CreateanInverted-.
{word:[locations]}
"""
inverted={}
forindex,wordinword_split(text):
locations=inverted.setdefault(word,[])
locations.append(index)
returninverted
definverted_index_add(inverted,doc_id,doc_index):
"""
AddInvertd-Indexdoc_indexofthedocumentdoc_idtothe
Multi-DocumentInverted-Index(inverted),
usingdoc_idasdocumentidentifier.
{word:{doc_id:[locations]}}
"""
forword,locationsindoc_index.iteritems():
indices=inverted.setdefault(word,{})
indices[doc_id]=locations
returninverted
defsearch_a_word(inverted,word):
"""
searchoneword
"""
word=word.decode('utf-8')
ifwordnotininverted:
returnNone
else:
word_index=inverted[word]
returnword_index
defsearch_words(inverted,wordList):
"""
searchmorethanoneword
"""
wordDic=[]
docRight=[]
forwordinwordList:
ifisinstance(word,str):
word=word.decode('utf-8')
ifwordnotininverted:
returnNone
else:
element=inverted[word].keys()
element.sort()
wordDic.append(element)
numbers=len(wordDic)
inerIndex=[0foriinrange(numbers)]
docIndex=[wordDic[i][0]foriinrange(numbers)]
flag=True
whileflag:
ifmin(docIndex)==max(docIndex):
docRight.append(min(docIndex))
inerIndex=[inerIndex[i]+1foriinrange(numbers)]
foriinrange(numbers):
ifinerIndex[i]>=len(wordDic[i]):
flag=False
returndocRight
docIndex=[wordDic[i][inerIndex[i]]foriinrange(numbers)]
else:
minIndex=min(docIndex)
minPosition=docIndex.index(minIndex)
inerIndex[minPosition]+=1
ifinerIndex[minPosition]>=len(wordDic[minPosition]):
flag=False
returndocRight
docIndex=[wordDic[i][inerIndex[i]]foriinrange(numbers)]
defsearch_phrase(inverted,phrase):
"""
searchphrase
"""
docRight={}
temp=word_split(phrase)
wordList=[temp[i][1]foriinrange(len(temp))]
docPossible=search_words(inverted,wordList)
fordocindocPossible:
wordIndex=[]
indexRight=[]
forwordinwordList:
wordIndex.append(inverted[word][doc])
numbers=len(wordList)
inerIndex=[0foriinrange(numbers)]
words=[wordIndex[i][0]foriinrange(numbers)]
flag=True
whileflag:
ifwords[-1]-words[0]==numbers-1:
indexRight.append(words[0])
inerIndex=[inerIndex[i]+1foriinrange(numbers)]
foriinrange(numbers):
ifinerIndex[i]>=len(wordIndex[i]):
flag=False
docRight[doc]=indexRight
break
ifflag:
words=[wordIndex[i][inerIndex[i]]foriinrange(numbers)]
else:
minIndex=min(words)
minPosition=words.index(minIndex)
inerIndex[minPosition]+=1
ifinerIndex[minPosition]>=len(wordIndex[minPosition]):
flag=False
break
ifflag:
words=[wordIndex[i][inerIndex[i]]foriinrange(numbers)]
returndocRight
if__name__=='__main__':
doc1="""
中文分詞指的是將一個漢字序列切分成一個一個單獨的詞。分詞就是將連續的字序列按照一定的規范
重新組合成詞序列的過程。我們知道,在英文的行文中,單詞之間是以空格作為自然分界符的,而中文
只是字、句和段能通過明顯的分界符來簡單劃界,唯獨詞沒有一個形式上的分界符,雖然英文也同樣
存在短語的劃分問題,不過在詞這一層上,中文比之英文要復雜的多、困難的多。
"""
doc2="""
存在中文分詞技術,是由於中文在基本文法上有其特殊性,具體表現在:
與英文為代表的拉丁語系語言相比,英文以空格作為天然的分隔符,而中文由於繼承自古代漢語的傳統,
詞語之間沒有分隔。古代漢語中除了連綿詞和人名地名等,詞通常就是單個漢字,所以當時沒有分詞
書寫的必要。而現代漢語中雙字或多字詞居多,一個字不再等同於一個詞。
在中文裡,「詞」和「片語」邊界模糊
現代漢語的基本表達單元雖然為「詞」,且以雙字或者多字詞居多,但由於人們認識水平的不同,對詞和
短語的邊界很難去區分。
例如:「對隨地吐痰者給予處罰」,「隨地吐痰者」本身是一個詞還是一個短語,不同的人會有不同的標准,
同樣的「海上」「酒廠」等等,即使是同一個人也可能做出不同判斷,如果漢語真的要分詞書寫,必然會出現
混亂,難度很大。
中文分詞的方法其實不局限於中文應用,也被應用到英文處理,如手寫識別,單詞之間的空格就不很清楚,
中文分詞方法可以幫助判別英文單詞的邊界。
"""
doc3="""
作用
中文分詞是文本挖掘的基礎,對於輸入的一段中文,成功的進行中文分詞,可以達到電腦自動識別語句含義的效果。
中文分詞技術屬於自然語言處理技術范疇,對於一句話,人可以通過自己的知識來明白哪些是詞,哪些不是詞,
但如何讓計算機也能理解?其處理過程就是分詞演算法。
影響
中文分詞對於搜索引擎來說,最重要的並不是找到所有結果,因為在上百億的網頁中找到所有結果沒有太多的意義,
沒有人能看得完,最重要的是把最相關的結果排在最前面,這也稱為相關度排序。中文分詞的准確與否,常常直接
影響到對搜索結果的相關度排序。從定性分析來說,搜索引擎的分詞演算法不同,詞庫的不同都會影響頁面的返回結果
"""
doc4="""
這種方法又叫做機械分詞方法,它是按照一定的策略將待分析的漢字串與一個「充分大的」機器詞典中的詞條進行配,
若在詞典中找到某個字元串,則匹配成功(識別出一個詞)。按照掃描方向的不同,串匹配分詞方法可以分為正向
匹配和逆向匹配;按照不同長度優先匹配的情況,可以分為最大(最長)匹配和最小(最短)匹配;常用的幾種
機械分詞方法如下:
正向最大匹配法(由左到右的方向);
逆向最大匹配法(由右到左的方向);
最少切分(使每一句中切出的詞數最小);
雙向最大匹配法(進行由左到右、由右到左兩次掃描)
還可以將上述各種方法相互組合,例如,可以將正向最大匹配方法和逆向最大匹配方法結合起來構成雙向匹配法。
由於漢語單字成詞的特點,正向最小匹配和逆向最小匹配一般很少使用。一般說來,逆向匹配的切分精度略高於
正向匹配,遇到的歧義現象也較少。統計結果表明,單純使用正向最大匹配的錯誤率為,單純使用逆向
最大匹配的錯誤率為。但這種精度還遠遠不能滿足實際的需要。實際使用的分詞系統,都是把機械分詞
作為一種初分手段,還需通過利用各種其它的語言信息來進一步提高切分的准確率。
一種方法是改進掃描方式,稱為特徵掃描或標志切分,優先在待分析字元串中識別和切分出一些帶有明顯特徵
的詞,以這些詞作為斷點,可將原字元串分為較小的串再來進機械分詞,從而減少匹配的錯誤率。另一種方法
是將分詞和詞類標注結合起來,利用豐富的詞類信息對分詞決策提供幫助,並且在標注過程中又反過來對分詞
結果進行檢驗、調整,從而極大地提高切分的准確率。
對於機械分詞方法,可以建立一個一般的模型,在這方面有專業的學術論文,這里不做詳細論述。
"""
doc5="""
從形式上看,詞是穩定的字的組合,因此在上下文中,相鄰的字同時出現的次數越多,就越有可能構成一個詞。
因此字與字相鄰共現的頻率或概率能夠較好的反映成詞的可信度。可以對語料中相鄰共現的各個字的組合的頻度
進行統計,計算它們的互現信息。定義兩個字的互現信息,計算兩個漢字的相鄰共現概率。互現信息體現了
漢字之間結合關系的緊密程度。當緊密程度高於某一個閾值時,便可認為此字組可能構成了一個詞。這種方法
只需對語料中的字組頻度進行統計,不需要切分詞典,因而又叫做無詞典分詞法或統計取詞方法。但這種方法
也有一定的局限性,會經常抽出一些共現頻度高、但並不是詞的常用字組,例如「這一」、「之一」、「有的」、
「我的」、「許多的」等,並且對常用詞的識別精度差,時空開銷大。實際應用的統計分詞系統都要使用一部基本
的分詞詞典(常用詞詞典)進行串匹配分詞,同時使用統計方法識別一些新的詞,即將串頻統計和串匹配結合起來,
既發揮匹配分詞切分速度快、效率高的特點,又利用了無詞典分詞結合上下文識別生詞、自動消除歧義的優點。
另外一類是基於統計機器學習的方法。首先給出大量已經分詞的文本,利用統計機器學習模型學習詞語切分的規律
(稱為訓練),從而實現對未知文本的切分。我們知道,漢語中各個字單獨作詞語的能力是不同的,此外有的字常
常作為前綴出現,有的字卻常常作為後綴(「者」「性」),結合兩個字相臨時是否成詞的信息,這樣就得到了許多
與分詞有關的知識。這種方法就是充分利用漢語組詞的規律來分詞。這種方法的最大缺點是需要有大量預先分好詞
的語料作支撐,而且訓練過程中時空開銷極大。
到底哪種分詞演算法的准確度更高,目前並無定論。對於任何一個成熟的分詞系統來說,不可能單獨依靠某一種演算法
來實現,都需要綜合不同的演算法。例如,海量科技的分詞演算法就採用「復方分詞法」,所謂復方,就是像中西醫結合
般綜合運用機械方法和知識方法。對於成熟的中文分詞系統,需要多種演算法綜合處理問題。
"""
#BuildInverted-Indexfordocuments
inverted={}
documents={'doc1':doc1,'doc2':doc2,'doc3':doc3,'doc4':doc4,'doc5':doc5}
fordoc_id,textindocuments.iteritems():
doc_index=inverted_index(text)
inverted_index_add(inverted,doc_id,doc_index)
#Searchoneword
aWord="分詞"
result_a_word=search_a_word(inverted,aWord)
ifresult_a_word:
result_a_word_docs=result_a_word.keys()
print"'%s'isappearedat"%(aWord)
forresult_a_word_docinresult_a_word_docs:
result_a_word_index=result_a_word[result_a_word_doc]
forindexinresult_a_word_index:
print(str(index)+''),
print"of"+result_a_word_doc
print""
else:
print"Nomatches! "
#Searchmorethanoneword
words=["漢語","切分"]
result_words=search_words(inverted,words)
ifresult_words:
print("["),
foriinrange(len(words)):
print("%s"%(words[i])),
print("]areappearedatthe"),
forresult_words_docinresult_words:
print(result_words_doc+''),
print" "
else:
print"Nomatches! "
#Searchphrase
phrase="中文分詞"
result_phrase=search_phrase(inverted,phrase)
ifresult_phrase:
result_phrase_docs=result_phrase.keys()
print"'%s'isappearedatthe"%(phrase)
forresult_phrase_docinresult_phrase_docs:
result_phrase_index=result_phrase[result_phrase_doc]
forindexinresult_phrase_index:
print(str(index)+''),
print"of"+result_phrase_doc
print""
else:
print"Nomatches! "
Ⅳ Python 分詞後詞頻統計
out_one=re.compile(r'(.*?) 00',re.S)
out_one_re=re.findall(self.out_one,i)
a={}
forjinout_one_re:
a[j]=out_one_re.count(j)
使用字典屬性,內容唯一來進行統計。出來的包括內容和次數。
Ⅳ python3怎麼使用結巴分詞
下面這個程序是對一個文本文件里的內容進行分詞的程序:test.py
[python] view plain
#!/usr/bin/python
#-*-encoding:utf-8-*-
importjieba#導入jieba模塊
defsplitSentence(inputFile,outputFile):
fin=open(inputFile,'r')#以讀的方式打開文件
fout=open(outputFile,'w')#以寫得方式打開文件
foreachLineinfin:
line=eachLine.strip().decode('utf-8','ignore')#去除每行首尾可能出現的空格,並轉為Unicode進行處理
wordList=list(jieba.cut(line))#用結巴分詞,對每行內容進行分詞
outStr=''
forwordinwordList:
outStr+=word
outStr+='/'
fout.write(outStr.strip().encode('utf-8')+' ')#將分詞好的結果寫入到輸出文件
fin.close()
fout.close()
splitSentence('myInput.txt','myOutput.txt')
寫完程序之後,在Linux重點輸入:python test.py即可運行程序進行分詞。
輸入的文件內容如下所示:
注意:第11行的 jieba.cut()返回的結構是一個可迭代的generator,可以用list(jieba.cut(...))轉化為list
Ⅵ 結巴分詞獲取關鍵詞時怎麼過濾掉一些停用詞
您好,請問您是想知道結巴分詞獲取關鍵詞時怎麼過濾掉一些停用詞嗎?
Ⅶ 一個txt文檔,已經用結巴分詞分完詞,怎麼用python工具對這個分完詞的文檔進行計算統計詞頻,求腳本,非
#!/usr/bin/envpython3
#-*-coding:utf-8-*-
importos,random
#假設要讀取文件名為aa,位於當前路徑
filename='aa.txt'
dirname=os.getcwd()
f_n=os.path.join(dirname,filename)
#注釋掉的程序段,用於測試腳本,它生成20行數據,每行有1-20隨機個數字,每個數字隨機1-20
'''
test=''
foriinrange(20):
forjinrange(random.randint(1,20)):
test+=str(random.randint(1,20))+''
test+=' '
withopen(f_n,'w')aswf:
wf.write(test)
'''
withopen(f_n)asf:
s=f.readlines()
#將每一行數據去掉首尾的空格和換行符,然後用空格分割,再組成一維列表
words=[]
forlineins:
words.extend(line.strip().split(''))
#格式化要輸出的每行數據,首尾各佔8位,中間佔18位
defgeshi(a,b,c):
returnalignment(str(a))+alignment(str(b),18)+alignment(str(c))+' '
#中英文混合對齊,參考http://bbs.fishc.com/thread-67465-1-1.html,二樓
#漢字與字母格式化佔位format對齊出錯對不齊漢字對齊數字漢字對齊字母中文對齊英文
#alignment函數用於英漢混合對齊、漢字英文對齊、漢英對齊、中英對齊
defalignment(str1,space=8,align='left'):
length=len(str1.encode('gb2312'))
space=space-lengthifspace>=lengthelse0
ifalignin['left','l','L','Left','LEFT']:
str1=str1+''*space
elifalignin['right','r','R','Right','RIGHT']:
str1=''*space+str1
elifalignin['center','c','C','Center','CENTER','centre']:
str1=''*(space//2)+str1+''*(space-space//2)
returnstr1
w_s=geshi('序號','詞','頻率')
#由(詞,頻率)元組構成列表,先按頻率降序排序,再按詞升序排序,多級排序,一組升,一組降,高級sorted
wordcount=sorted([(w,words.count(w))forwinset(words)],key=lambdal:(-l[1],l[0]))
#要輸出的數據,每一行由:序號(佔8位)詞(佔20位)頻率(佔8位)+' '構成,序號=List.index(element)+1
for(w,c)inwordcount:
w_s+=geshi(wordcount.index((w,c))+1,w,c)
#將統計結果寫入文件ar.txt中
writefile='ar.txt'
w_n=os.path.join(dirname,writefile)
withopen(w_n,'w')aswf:
wf.write(w_s)
Ⅷ jieba分詞詳解
「結巴」分詞是一個Python 中文分片語件,參見 https://github.com/fxsjy/jieba
可以對中文文本進行 分詞、詞性標注、關鍵詞抽取 等功能,並且支持自定義詞典。
本文包括以下內容:
1、jieba分詞包的 安裝
2、jieba分詞的 使用教程
3、jieba分詞的 工作原理與工作流程
4、jieba分詞所涉及到的 HMM、TextRank、TF-IDF等演算法介紹
可以直接使用pip來進行安裝:
sudo pip install jieba
或者
sudo pip3 install jieba
關鍵詞抽取有兩種演算法,基於TF-IDF和基於TextRank:
jieba分詞有三種不同的分詞模式: 精確模式、全模式和搜索引擎模式 :
對應的,函數前加l即是對應得到list結果的函數:
精確模式是最常用的分詞方法,全模式會將句子中所有可能的詞都列舉出來,搜索引擎模式則適用於搜索引擎使用。具體的差別可在下一節工作流程的分析中詳述。
在上述每個函數中,都有名為HMM的參數。這一項表示是否在分詞過程中利用HMM進行新詞發現。關於HMM,本文附錄中將簡述相關知識。
另外分詞支持自定義字典,詞典格式和 dict.txt 一樣,一個詞佔一行;每一行分三部分:詞語、詞頻(可省略)、詞性(可省略),用空格隔開,順序不可顛倒。
具體使用方法為:
關鍵詞抽取的兩個函數的完整參數為:
可以通過
來打開或關閉並行分詞功能。
個人感覺一般用不到,大文件分詞需要手動實現多進程並行,句子分詞也不至於用這個。
jieba分詞主要通過詞典來進行分詞及詞性標注,兩者使用了一個相同的詞典。正因如此,分詞的結果優劣將很大程度上取決於詞典,雖然使用了HMM來進行新詞發現。
jieba分詞包整體的工作流程如下圖所示:
下面將根據源碼詳細地分析各個模塊的工作流程。
在之後幾節中,我們在 藍色的方框 中示範了關鍵步驟的輸出樣例或詞典文件的格式樣例。在本節中都採用類似的表示方式。
jieba分詞中,首先通過對照典生成句子的 有向無環圖 ,再根據選擇的模式不同,根據詞典 尋找最短路徑 後對句子進行截取或直接對句子進行截取。對於未登陸詞(不在詞典中的詞)使用 HMM 進行新詞發現。
詞典的格式應為
word1 freq1 word_type1
word2 freq2 word_type2
…
其中自定義用戶詞典中詞性word_type可以省略。
詞典在其他模塊的流程中可能也會用到,為方便敘述,後續的流程圖中將會省略詞典的初始化部分。
圖b演示了搜索引擎模式的工作流程,它會在精確模式分詞的基礎上,將長詞再次進行切分。
在這里我們假定讀者已經了解HMM相關知識,如果沒有可先行閱讀下一章內容中的HMM相關部分或者跳過本節。
在jieba分詞中,將字在詞中的位置B、M、E、S作為隱藏狀態,字是觀測狀態,使用了詞典文件分別存儲字之間的表現概率矩陣(finalseg/prob_emit.py)、初始概率向量(finalseg/prob_start.py)和轉移概率矩陣(finalseg/prob_trans.py)。這就是一個標準的 解碼問題 ,根據概率再利用 viterbi演算法 對最大可能的隱藏狀態進行求解。
詞性分析部分與分詞模塊用了同一個基礎的分詞器,對於詞典詞的詞性,將直接從詞典中提取,但是對於新詞,詞性分析部分有一個 專屬的新詞及其詞性的發現模塊 。
用於詞性標注的HMM模型與用於分詞的HMM模型相似,同樣將文字序列視為可見狀態,但是隱藏狀態不再是單單的詞的位置(B/E/M/S),而變成了詞的位置與詞性的組合,如(B,v)(B,n)(S,n)等等。因此其初始概率向量、轉移概率矩陣和表現概率矩陣和上一節中所用的相比都要龐大的多,但是其本質以及運算步驟都沒有變化。
具體的工作流程如下圖所示。
jieba分詞中有兩種不同的用於關鍵詞抽取的演算法,分別為TextRank和TF-IDF。實現流程比較簡單,其核心在於演算法本身。下面簡單地畫出實現流程,具體的演算法可以參閱下一章內容。
TextRank方法默認篩選詞性,而TF-IDF方法模型不進行詞性篩選。
在本章中,將會簡單介紹相關的演算法知識,主要包括用於新詞發現的 隱馬爾科夫模型 和 維特比演算法 、用於關鍵詞提取的 TextRank 和 TF-IDF 演算法。
HMM即隱馬爾科夫模型,是一種基於馬爾科夫假設的統計模型。之所以為「隱」,是因為相較於馬爾科夫過程HMM有著未知的參數。在世界上,能看到的往往都是表象,而事物的真正狀態往往都隱含在表象之下,並且與表象有一定的關聯關系。
其中,S、O分別表示狀態序列與觀測序列。
如果讀者還對這部分內容心存疑問,不妨先往下閱讀,下面我們將以一個比較簡單的例子對HMM及解碼演算法進行實際說明與演示,在讀完下一小節之後再回來看這些式子,或許能夠恍然大悟。
下面以一個簡單的例子來進行闡述:
假設小明有一個網友小紅,小紅每天都會在朋友圈說明自己今天做了什麼,並且假設其僅受當天天氣的影響,而當天的天氣也只受前一天天氣的影響。
於小明而言,小紅每天做了什麼是可見狀態,而小紅那裡的天氣如何就是隱藏狀態,這就構成了一個HMM模型。一個HMM模型需要有五個要素:隱藏狀態集、觀測集、轉移概率、觀測概率和初始狀態概率。
即在第j個隱藏狀態時,表現為i表現狀態的概率。式中的n和m表示隱藏狀態集和觀測集中的數量。
本例中在不同的天氣下,小紅要做不同事情的概率也不同, 觀測概率 以表格的形式呈現如下:
其中
除此之外,還需要一個初始狀態概率向量π,它表示了觀測開始時,即t=0時,隱藏狀態的概率值。本例中我們指定 π={0,0,1} 。
至此,一個完整的 隱馬爾科夫模型 已經定義完畢了。
HMM一般由三類問題:
概率計算問題 ,即給定 A,B,π 和隱藏狀態序列,計算觀測序列的概率;
預測問題 ,也成解碼問題,已知 A,B,π 和觀測序列,求最優可能對應的狀態序列;
學習問題 ,已知觀測序列,估計模型的 A,B,π 參數,使得在該模型下觀測序列的概率最大,即用極大似然估計的方法估計參數。
在jieba分詞中所用的是解碼問題,所以此處對預測問題和學習問題不做深入探討,在下一小節中我們將繼續以本節中的例子為例,對解碼問題進行求解。
在jieba分詞中,採用了HMM進行新詞發現,它將每一個字表示為B/M/E/S分別代表出現在詞頭、詞中、詞尾以及單字成詞。將B/M/E/S作為HMM的隱藏狀態,而連續的各個單字作為觀測狀態,其任務即為利用觀測狀態預測隱藏狀態,並且其模型的 A,B,π 概率已經給出在文件中,所以這是一個標準的解碼問題。在jieba分詞中採用了 Viterbi演算法 來進行求解。
Viterbi演算法的基本思想是: 如果最佳路徑經過一個點,那麼起始點到這個點的路徑一定是最短路徑,否則用起始點到這點更短的一條路徑代替這段,就會得到更短的路徑,這顯然是矛盾的;從起始點到結束點的路徑,必然要經過第n個時刻,假如第n個時刻有k個狀態,那麼最終路徑一定經過起始點到時刻n中k個狀態里最短路徑的點 。
將時刻t隱藏狀態為i所有可能的狀態轉移路徑i1到i2的狀態最大值記為
下面我們繼續以上一節中的例子來對viterbi演算法進行闡述:
小明不知道小紅是哪裡人,他只能通過小紅每天的活動來推斷那裡的天氣。
假設連續三天,小紅的活動依次為:「睡覺-打游戲-逛街」,我們將據此計算最有可能的天氣情況。
表示第一天為雨天能夠使得第二天為晴天的概率最大(也就是說如果第二天是晴天在最短路徑上的話,第一天是雨天也一定在最短路徑上,參見上文中Viterbi演算法的基本思想)
此時已經到了最後的時刻,我們開始回溯。
其計算過程示意圖如下圖所示。
)的路徑。
TF-IDF(詞頻-逆文本頻率)是一種用以評估字詞在文檔中重要程度的統計方法。它的核心思想是,如果某個詞在一篇文章中出現的頻率即TF高,並且在其他文檔中出現的很少,則認為這個詞有很好的類別區分能力。
其中:
TextRank是一種用以關鍵詞提取的演算法,因為是基於PageRank的,所以先介紹PageRank。
PageRank通過互聯網中的超鏈接關系確定一個網頁的排名,其公式是通過一種投票的思想來設計的:如果我們計算網頁A的PageRank值,那麼我們需要知道哪些網頁鏈接到A,即首先得到A的入鏈,然後通過入鏈給網頁A進行投票來計算A的PR值。其公式為:
其中:
d為阻尼系數,取值范圍為0-1,代表從一定點指向其他任意點的概率,一般取值0.85。
將上式多次迭代即可直到收斂即可得到結果。
TextRank演算法基於PageRank的思想,利用投票機制對文本中重要成分進行排序。如果兩個詞在一個固定大小的窗口內共同出現過,則認為兩個詞之間存在連線。
公式與PageRank的基本相同。多次迭代直至收斂,即可得到結果。
在jieba分詞中,TextRank設定的詞窗口大小為5,將公式1迭代10次的結果作為最終權重的結果,而不一定迭代至收斂。
Ⅸ python中怎樣處理漢語的同義詞用結巴分詞
python中文分詞:結巴分詞
中文分詞是中文文本處理的一個基礎性工作,結巴分詞利用進行中文分詞。其基本實現原理有三點:
基於Trie樹結構實現高效的詞圖掃描,生成句子中漢字所有可能成詞情況所構成的有向無環圖(DAG)
採用了動態規劃查找最大概率路徑, 找出基於詞頻的最大切分組合
對於未登錄詞,採用了基於漢字成詞能力的HMM模型,使用了Viterbi演算法
安裝(Linux環境)
下載工具包,解壓後進入目錄下,運行:python setup.py install
模式
默認模式,試圖將句子最精確地切開,適合文本分析
全模式,把句子中所有的可以成詞的詞語都掃描出來,適合搜索引擎
介面
組件只提供jieba.cut 方法用於分詞
cut方法接受兩個輸入參數:
第一個參數為需要分詞的字元串
cut_all參數用來控制分詞模式
待分詞的字元串可以是gbk字元串、utf-8字元串或者unicode
jieba.cut返回的結構是一個可迭代的generator,可以使用for循環來獲得分詞後得到的每一個詞語(unicode),也可以用list(jieba.cut(...))轉化為list
實例
#! -*- coding:utf-8 -*-
import jieba
seg_list = jieba.cut("我來到北京清華大學", cut_all = True)
print "Full Mode:", ' '.join(seg_list)
seg_list = jieba.cut("我來到北京清華大學")
print "Default Mode:", ' '.join(seg_list)