導航:首頁 > 凈水問答 > 協同過濾評估

協同過濾評估

發布時間:2022-07-02 04:33:53

㈠ 現在tensorflow和mxnet很火,是否還有必要學習scikit-learn等框架

很有必要,但不用太深入,在Kaggle上認真搞2,3個比賽能進10%的程度就夠了

㈡ 推薦演算法的基於協同過濾的推薦

基於協同過濾的推薦演算法理論上可以推薦世界上的任何一種東西。圖片、音樂、樣樣可以。 協同過濾演算法主要是通過對未評分項進行評分 預測來實現的。不同的協同過濾之間也有很大的不同。
基於用戶的協同過濾演算法: 基於一個這樣的假設「跟你喜好相似的人喜歡的東西你也很有可能喜歡。」所以基於用戶的協同過濾主要的任務就是找出用戶的最近鄰居,從而根據最近鄰 居的喜好做出未知項的評分預測。這種演算法主要分為3個步驟:
一,用戶評分。可以分為顯性評分和隱形評分兩種。顯性評分就是直接給項目評分(例如給網路里的用戶評分),隱形評分就是通過評價或是購買的行為給項目評分 (例如在有啊購買了什麼東西)。
二,尋找最近鄰居。這一步就是尋找與你距離最近的用戶,測算距離一般採用以下三種演算法:1.皮爾森相關系數。2.餘弦相似性。3調整餘弦相似性。調整餘弦 相似性似乎效果會好一些。
三,推薦。產生了最近鄰居集合後,就根據這個集合對未知項進行評分預測。把評分最高的N個項推薦給用戶。 這種演算法存在性能上的瓶頸,當用戶數越來越多的時候,尋找最近鄰居的復雜度也會大幅度的增長。
因而這種演算法無法滿足及時推薦的要求。基於項的協同過濾解決了這個問題。 基於項的協同過濾演算法 根基於用戶的演算法相似,只不過第二步改為計算項之間的相似度。由於項之間的相似度比較穩定可以在線下進行,所以解決了基於用戶的協同過濾演算法存在的性能瓶頸。

㈢ 協同過濾,基於內容推薦有什麼區別

舉個簡單的小例子,我們已知道
用戶u1喜歡的電影是A,B,C
用戶u2喜歡的電影是A, C, E, F
用戶u3喜歡的電影是B,D
我們需要解決的問題是:決定對u1是不是應該推薦F這部電影
基於內容的做法:要分析F的特徵和u1所喜歡的A、B、C的特徵,需要知道的信息是A(戰爭片),B(戰爭片),C(劇情片),如果F(戰爭片),那麼F很大程度上可以推薦給u1,這是基於內容的做法,你需要對item進行特徵建立和建模。
協同過濾的辦法:那麼你完全可以忽略item的建模,因為這種辦法的決策是依賴user和item之間的關系,也就是這里的用戶和電影之間的關系。我們不再需要知道ABCF哪些是戰爭片,哪些是劇情片,我們只需要知道用戶u1和u2按照item向量表示,他們的相似度比較高,那麼我們可以把u2所喜歡的F這部影片推薦給u1。
根據數據源的不同推薦引擎可以分為三類
1、基於人口的統計學推薦(Demographic-based Recommendation)
2、基於內容的推薦(Content-based Recommendation)
3、基於協同過濾的推薦(Collaborative Filtering-based Recommendation)
基於內容的推薦:
根據物品或內容的元數據,發現物品或內容的相關性,然後基於用戶以前的喜好記錄推薦給用戶相似的物品
基於內容推薦的一個典型的例子,電影推薦系統,首先我們需要對電影的元數據有一個建模,這里只簡單的描述了一下電影的類型;然後通過電影的元數據發現電影間的相似度,因為類型都是「愛情,浪漫」電影 A 和 C 被認為是相似的電影(當然,只根據類型是不夠的,要得到更好的推薦,我們還可以考慮電影的導演,演員等等);最後實現推薦,對於用戶 A,他喜歡看電影 A,那麼系統就可以給他推薦類似的電影 C。

㈣ 基於item的協同過濾演算法是什麼意思

電子商來務推薦系統的一自種主要演算法。協同過濾推薦(Collaborative Filtering recommendation)是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,

㈤ 個性化推薦演算法——協同過濾

有三種:協同過濾
用戶歷史行為
物品相似矩陣

㈥ 什麼是協同過濾 collaborative filtering

協同過濾(Collaborative Filtering)的基本概念就是把這種方式變成自動化的流程

協同過濾主要是以屬性或興趣相近的用戶經驗與建議作為提供個性化的基礎。透過協同過濾,有助於搜集具有類似偏好或屬性的用戶,並將其意見提供給同一集群中的用戶作為參考,以滿足人們通常在決策之前參考他人意見的心態。

本人認為,協同過濾技術應包括如下幾方面:(1)一種比對和搜集每個用戶興趣偏好的過程;(2)它需要許多用戶的信息去預測個人的興趣偏好;(3)通過對用戶之間興趣偏好相關程度的統計去發展建議那些有相同興趣偏好的用戶。

㈦ 協同過濾演算法有哪些 slope

協同過濾演算法是這一領域的主流。作為基於內容的演算法執行方式內,協同過濾在准確性上具容有相當的優勢,但無法冷啟動、同質化和運算效率低使其依然存在很多不足。
協同過濾演算法的名稱來源於化學上的過濾操作。
原理
利用物質的溶解性差異,將液體和不溶於液體的固體分離開來的一種方法。如用過濾法除去粗食鹽中少量的泥沙

過濾實驗儀器
漏斗、燒杯、玻璃棒、鐵架台(含鐵圈)、濾紙。

過濾操作要領
要做到「一貼、二低、三靠」。
一貼
即使濾紙潤濕,緊貼漏斗內壁,中間不要留下氣泡。(防止氣泡減慢過濾速度。)
二低
1.濾紙邊緣略低於漏斗邊緣。
2.液面低於濾紙邊緣。(防止液體過濾不凈。)
三靠
1.傾倒時燒杯杯口要緊靠玻璃棒上。
2.玻璃棒下端抵靠在三層濾紙處。
3.漏斗下端長的那側管口緊靠燒杯內壁。

過濾注意事項
1.燒杯中的混合物在過濾前應用玻璃棒攪拌,然後進行過濾。
2.過濾後若溶液還顯渾濁,應再過濾一次,直到溶液變得透明為止。
3.過濾器中的沉澱的洗滌方法:用燒瓶或滴管向過濾器中加蒸餾水,使水面蓋沒沉澱物,待溶液全部濾出後,重復2~3次。
希望我能幫助你解疑釋惑。

㈧ 協同過濾的演算法細分

這是最早應用協同過濾系統的設計,主要是解決Xerox公司在 Alto的研究中心資訊過載的問題。這個研究中心的員工每天會收到非常多的電子郵件卻無從篩選分類,於是研究中心便發展這項實驗性的郵件系統來幫助員工解決這項問題。 其運作機制大致如下:
個人決定自己的感興趣的郵件類型;個人旋即隨機發出一項資訊需求,可預測的結果是會收到非常多相關的文件;從這些文件中個人選出至少三筆資料是其認為有用、會想要看的;系統便將之記錄起來成為個人郵件系統內的過濾器,從此以後經過過濾的文件會最先送達信箱;以上是協同過濾最早的應用,接下來的里程碑為GroupLens。 這個系統主要是應用在新聞的篩選上,幫助新聞的閱聽者過濾其感興趣的新聞內容,閱聽者看過內容後給一個評比的分數,系統會將分數記錄起來以備未來參考之用,假設前提是閱聽者以前感興趣的東西在未來也會有興趣閱聽,若閱聽者不願揭露自己的身分也可以匿名進行評分。 和Tapestry不同之處有兩點,首先,Tapestry專指一個點(如一個網站內、一個系統內)的過濾機制;GroupLens則是跨點跨系統的新聞過濾機制。再來,Tapestry不會將同一筆資料的評比總和起來;GroupLens會將同一筆資料從不同使用者得到的評比加總。
GroupLens具有以下特點:開放性:所有的新聞閱聽者皆可使用,雖然系統委託Better Bit Bureau設計給分的系統,但若有不同的評分機制也適用於GroupLens。方便性:給分並不是一件困難的事情且溝通上非常方便,評分結果容易詮釋。規模性:有可能發展成大規模的系統,一旦發展成大規模,儲存空間與計算成本問題顯得相當棘手。隱密性:如果使用者不想讓別人知道他是誰,別人就不會知道。由此可以看出,現今網路各個推薦系統的雛形已然形成,在GroupLens之後還有性質相近的MovieLens,電影推薦系統;Ringo,音樂推薦系統;Video Recommender,影音推薦系統;以及Jster,笑話推薦系統等等。乃至於今日的YouTube、aNobii皆是相似性值得網路推薦平台,較不同的是經過時間推移,網路越來越發達,使用者越來越多,系統也發展得越來越嚴密。 最著名的電子商務推薦系統應屬亞馬遜網路書店,顧客選擇一本自己感興趣的書籍,馬上會在底下看到一行「Customer Who Bought This Item Also Bought」,亞馬遜是在「對同樣一本書有興趣的讀者們興趣在某種程度上相近」的假設前提下提供這樣的推薦,此舉也成為亞馬遜網路書店為人所津津樂道的一項服務,各網路書店也跟進做這樣的推薦服務如台灣的博客來網路書店。 另外一個著名的例子是Facebook的廣告,系統根據個人資料、周遭朋友感興趣的廣告等等對個人提供廣告推銷,也是一項協同過濾重要的里程碑,和前二者Tapestry、GroupLens不同的是在這里雖然商業氣息濃厚同時還是帶給使用者很大的方便。 以上為三項協同過濾發展上重要的里程碑,從早期單一系統內的郵件、文件過濾,到跨系統的新聞、電影、音樂過濾,乃至於今日橫行互聯網的電子商務,雖然目的不太相同,但帶給使用者的方便是大家都不能否定的。

㈨ 協同過濾的演算法簡介

電子商務推薦系統的一種主要演算法。
協同過濾推薦(Collaborative Filtering recommendation)是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,協同過濾分析用戶興趣,在用戶群中找到指定用戶的相似(興趣)用戶,綜合這些相似用戶對某一信息的評價,形成系統對該指定用戶對此信息的喜好程度預測。
與傳統文本過濾相比,協同過濾有下列優點:
(1)能夠過濾難以進行機器自動基於內容分析的信息。如藝術品、音樂;
(2)能夠基於一些復雜的,難以表達的概念(信息質量、品位)進行過濾;
(3)推薦的新穎性。
正因為如此,協同過濾在商業應用上也取得了不錯的成績。Amazon,CDNow,MovieFinder,都採用了協同過濾的技術來提高服務質量。
缺點是:
(1)用戶對商品的評價非常稀疏,這樣基於用戶的評價所得到的用戶間的相似性可能不準確(即稀疏性問題);
(2)隨著用戶和商品的增多,系統的性能會越來越低;
(3)如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦(即最初評價問題)。
因此,現在的電子商務推薦系統都採用了幾種技術相結合的推薦技術。
案例: AMAZON個性化推薦系統先驅 (基於協同過濾)
AMAZON是一個虛擬的網上書店,它沒有自己的店面,而是在網上進行在線銷售。它提供了高質量的綜合節目資料庫和檢索系統,用戶可以在網上查詢有關圖書的信息。如果用戶需要購買的話,可以把選擇的書放在虛擬購書籃中,最後查看購書籃中的商品,選擇合適的服務方式並且提交訂單,這樣讀者所選購的書在幾天後就可以送到家。
AMAZON書店還提供先進的個性化推薦功能,能為不同興趣偏好的用戶自動推薦盡量符合其興趣需要的書籍。 AMAZON使用推薦軟體對讀者曾經購買過的書以及該讀者對其他書的評價進行分析後,將向讀者推薦他可能喜歡的新書,只要滑鼠點一下,就可以買到該書;AMAZON能對顧客購買過的東西進行自動分析,然後因人而異的提出合適的建議。讀者的信息將被再次保存,這樣顧客下次來時就能更容易的買到想要的書。此外,完善的售後服務也是AMAZON的優勢,讀者可以在拿到書籍的30天內,將完好無損的書和音樂光碟退回AMAZON,AMAZON將原價退款。當然AMAZON的成功還不止於此,如果一位顧客在AMAZON購買一本書,下次他再次訪問時,映入眼簾的首先是這位顧客的名字和歡迎的字樣。

㈩ 協同過濾和基於內容推薦有什麼區別

協同過濾和基於內容推薦核心思想是不同的:

協同過濾側重於從大數據(集體智慧)中尋找某些隱含的模式,以物品為核心,它是對基於用戶的協同過濾的一種改良。基於內容推薦則側重於通過對象的屬性信息來進行匹配建模進而尋找相似的用戶或者商品,本質是「你喜歡某一事物,給你推薦近似的事物。」。

簡介:

個性化推薦,是系統的智能推薦。個性化推薦的原理使用較多的是這3種方式:基於內容的推薦、基於用戶的協同過濾、基於物品的協同過濾這3種推薦方式的核心則是計算相似度。

閱讀全文

與協同過濾評估相關的資料

熱點內容
液相用溶劑過濾器 瀏覽:674
納濾水導電率 瀏覽:128
反滲透每小時2噸 瀏覽:162
做一個純凈水工廠需要多少錢 瀏覽:381
最終幻想4回憶技能有什麼用 瀏覽:487
污水提升器采通 瀏覽:397
反滲透和不發滲透凈水器有什麼區別 瀏覽:757
提升泵的揚程 瀏覽:294
澤德提升泵合肥經銷商 瀏覽:929
飲水機後蓋漏水了怎麼辦 瀏覽:953
小型電動提升器 瀏覽:246
半透膜和細胞膜區別 瀏覽:187
廢水拖把池 瀏覽:859
十四五期間城鎮污水處理如何提質增效 瀏覽:915
怎麼測試空氣凈化器的好壞 瀏覽:519
提升泵是幹嘛的 瀏覽:744
布油做蒸餾起沫咋辦 瀏覽:252
廣州工業油煙凈化器一般多少錢 瀏覽:204
喜哆哆空氣凈化器效果怎麼樣 瀏覽:424
油煙凈化器油盒在什麼位置 瀏覽:582